全国重点高中竞赛讲座 14染色问题与染色方法
《全国重点高中竞赛讲座 14染色问题与染色方法》由会员分享,可在线阅读,更多相关《全国重点高中竞赛讲座 14染色问题与染色方法(8页珍藏版)》请在七七文库上搜索。
1、竞赛讲座竞赛讲座 14 -染色问题与染色方法染色问题与染色方法 1 小方格染色问题 最简单的染色问题是从一种民间游戏中发展起来的方格盘上的染色问题.解决这类 问题的方法后来又发展成为解决方格盘铺盖问题的重要技巧. 例 1 如图 29-1(a),3 行 7 列小方格每一个染上红色或蓝色.试证:存在一个矩形,它 的四个角上的小方格颜色相同. 证明 由抽屉原则,第1行的7个小方格至少有4个不同色,不妨设为红色(带阴影) 并在 1、2、3、4 列(如图 29-1(b). 在第 1、2、3、4 列(以下不必再考虑第 5,6,7 列)中,如第 2 行或第 3 行出现两 个红色小方格,则这个问题已经得证;如
2、第 2 行和第 3 行每行最多只有一个红色小 方格(如图 29-1(c),那么在这两行中必出现四角同为蓝色的矩形,问题也得 到证明. 说明:(1)在上面证明过程中除了运用抽屉原则外,还要用到一种思考问题的有效 方法,就是逐步缩小所要讨论的对象的范围,把复杂问题逐步化为简单问题进行处 理的方法. (2)此例的行和列都不能再减少了.显然只有两行的方格盘染两色后是不一定存在 顶点同色的矩形的.下面我们举出一个3行6列染两色不存在顶点同色矩形的例子如 图 29-2.这说明 3 行 7 列是染两色存在顶点同色的矩形的最小方格盘了.至今,染 k 色而存在顶点同色的矩形的最小方格盘是什么还不得而知. 例 2
3、 (第 2 届全国部分省市初中数学通讯赛题)证明:用 15 块大小 是41的矩形瓷砖和 1块大小是22的矩形瓷砖, 不能恰好铺盖88矩形的地面. 分析 将 88 矩形地面的一半染上一种颜色,另一半染上另一种颜色,再用 41 和 22 的矩形瓷砖去盖,如果盖住的两种颜色的小矩形不是一样多, 则说明在给定 条件不完满铺盖不可能. 证明 如图 29-3,用间隔为两格且与副对角线平行的斜格同色的染色方式,以黑 白两种颜色将整个地面的方格染色.显然,地面上黑、白格各有 32 个. 每块 41 的矩形砖不论是横放还是竖盖,且不论盖在何处,总是占据地面上的两个 白格、两个黑格,故 15 块 41 的矩形砖铺
4、盖后还剩两个黑格和两个白格.但由于与 副对角线平行的斜格总是同色,而与主对角线平行的相邻格总是异色,所以,不论 怎样放置,一块 22 的矩形砖,总是盖住三黑一白或一黑三白.这说明剩下的一块 22 矩形砖无论如何盖不住剩下的二黑二白的地面.从而问题得证. 例 3 (1986 年北京初二数学竞赛题)如图 29-4(1)是 4 个 11 的正方形组成的“L”形,用若干个这种“L”形硬纸片无重迭拼成一个 mn(长为 m 个单位,宽为 n 个单位)的矩形如图 29-4(2).试证明 mn 必是 8 的倍数. 证明mn 矩形由“L”形拼成,mn 是 4 的倍数,m、n 中必有一个是偶数, 不妨设为 m.把
5、 mn 矩形中的 m 列按一列黑、一列白间隔染色(如图 29-4(2), 则不论“L”形在这矩形中的放置位置如何 (“L”形的放置, 共有 8 种可能) , “L” 形或占有 3 白一黑四个单位正方形 (第一种) , 或占有 3 黑一白四个单位正方形 (第 二种). 设第一种“L”形共有 p 个,第二种“L”形共 q 个,则 mn 矩形中的白格单位正方 形数为 3p+q,而它的黑格单位正方形数为 p+3q. m 为偶数,mn 矩形中黑、白条数相同,黑、白单位正方形总数也必相等.故有 3p+q=p+3q, 从而 p=q.所以“L”形的总数为 2p 个, 即“L”形总数为偶数, 所以 mn 一定是
6、 8 的倍数. 2 线段染色和点染色 下面介绍两类重要的染色问题. (1) 线段染色.较常见的一类染色问题是发样子组合数学中图论知识的所谓 “边染色”(或称“线段染色”),主要借助抽屉原则求解. 例 4 (1947 年匈牙利数学奥林匹克试题)世界上任何六个人中, 一定有 3 个人或者互相认识或者互相都不认识. 我们不直接证明这个命题,而来看与之等价的下述命题 例 5 (1953 年美国普特南数学竞赛题) 空间六点, 任三点不共线, 任四点不共面,成对地连接它们得十五条线段,用红色或蓝色染这些线段(一条线 段只染一种颜色).求证:无论怎样染,总存在同色三角形. 证明 设 A、B、C、D、E、F
7、是所给六点.考虑以 A 为端点的线段 AB、AC、AD、AE、 AF,由抽屉原则这五条线段中至少有三条颜色相同,不妨设就是 AB、AC、AD,且它 们都染成红色.再来看BCD 的三边,如其中有一条边例如 BC 是红色的,则同色三 角形已出现(红色ABC);如BCD 三边都不是红色的,则它就是蓝色的三角形, 同色三角形也现了.总之,不论在哪种情况下,都存在同色三角形. 如果将例 4 中的六个人看成例 5 中六点,两人认识的连红线,不认识的连蓝线,则例 4 就变成了例 5.例 5 的证明实际上用染色方法给出了例 4 的证明. 例 6 (第 6 届国际数学奥林匹克试题)有 17 位科学家,其中每一个
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国重点高中竞赛讲座 14染色问题与染色方法 全国 重点高中 竞赛 讲座 14 染色 问题 方法
![提示](https://www.77wenku.com/images/bang_tan.gif)
链接地址:https://www.77wenku.com/p-187917.html