2021年六年级奥数专项讲义及常考易错题-几何图形问题-相似三角形的性质问题 通用版(含答案)
《2021年六年级奥数专项讲义及常考易错题-几何图形问题-相似三角形的性质问题 通用版(含答案)》由会员分享,可在线阅读,更多相关《2021年六年级奥数专项讲义及常考易错题-几何图形问题-相似三角形的性质问题 通用版(含答案)(22页珍藏版)》请在七七文库上搜索。
1、常考易错题汇编常考易错题汇编-几何图形问题几何图形问题-相似三角形的性质问题相似三角形的性质问题 【知识点归纳】【知识点归纳】 相似三角形性质定理:1相似三角形对应角相等,对应边成比例 2相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等) 的比等于相似比 3相似三角形周长的比等于相似比 4相似三角形面积的比等于相似比的平方 5相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的 平方 6若 a b=b c,即 b2=ac,b 叫做 a,c 的比例中项 7.c d=a b 等同于 ad=bc 8不必是在同一平面内的三角形里 (1)
2、相似三角形对应角相等,对应边成比例 (2)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比 (3)相似三角形周长的比等于相似比 【常考题型】【常考题型】 例例 1: 如图: 梯形: 如图: 梯形 ABCD 中,中, ADBC, AC、 BD 交于交于 M, AM MCDM BM1 3, 若, 若 SADM=1, 求:梯形的求:梯形的面积面积 分析:根据题意知道分析:根据题意知道AMD 与与BMC 相似,由此得出相似,由此得出BMC 的面积,再根据的面积,再根据 AM MCDM BM 1 3,知道,知道ADM 与与ADB 高的比是高的比是 1:4,进而求出,进而求出ABD 的面积
3、,用的面积,用ADB 的面积乘的面积乘 2 再减再减 去去ADM 的面积,再计算的面积,再计算BMC 的面积就是梯形的面积的面积就是梯形的面积 解:因为,解:因为,AM MCDM BM1 3, 因为因为ADM 和和ABM 共高,共高,ADM 和和CDM 共高,共高,CDM 和和CBM 共高,共高, 所以所以 SADM:SABM=DM BM=1 3, SADM:SCDM=AM CM=1 3, SCDM:SCBM=DM BM=1 3, 因为因为 SADM=1, 所以所以 SABM=3,SCDM=3,SCBM=9, 所以梯形的面积为:所以梯形的面积为:1+3+3+9=16, 答:梯形的面积是答:梯形
4、的面积是 16 点评:此题考查了相似三角形的面积比等于相似比的平方的性质及底一定时,三角形的面积与高成点评:此题考查了相似三角形的面积比等于相似比的平方的性质及底一定时,三角形的面积与高成 正比的关系的灵活应用正比的关系的灵活应用 一填空题一填空题 1如图是一个平行四边形,BE:EC1:2,F 是 DC 的中点,三角形 ABE 的面积是 6 平方厘米,则 三角形 AFD 的面积是 平方厘米 2如图,E 是平行四边形 ABCD 边 CD 的中点,AC 和 BE 相交于 F,如果EFC 的面积是 1 平方厘 米,则平行四边形 ABCD 的面积是 平方厘米 3如图,四边形 ABCD 的面积是 42
5、平方厘米,其中两个小三角形的面积分别是 3 平方厘米和 4 平方 厘米,那么最大的一个三角形的面积是 平方厘米 4如图,ABC 中,点 E 在 AB 上,点 F 在 AC 上,BF 与 CE 相交于点 P,如果 S四边形AEPFSBEP 等于 SCFP4,则 SBPC的面积是 5如图,已知梯形 ABCD 中 ADBC,三角形 AOD 的面积比三角形 BOC 的面积少 12 平方厘米, 梯形 ABCD 的面积 6如图:已知在直角三角形 ABC 中,AF8 厘米,EC15 厘米正方形 EDFB 的面积是 平 方厘米 7如图,大小三角形均为正三角形,已知小正三角形的底为 15 厘米,高为 8 厘米则
6、大三角形的面 积是 平方厘米 8右图 ABCD 是个正方形,它的边长是 8 厘米,E、F 分别是边 AB、BC 的中点,图中阴影部分的面 积是 平方厘米 9 如图, 三角形 ABC 被分成三角形 BEF 和四边形 AEFC 两部分, 那么三角形 BEF 面积和四边形 AEFC 面积的比是 二解答题二解答题 10如图:长方形 ABCD 中,AB10 厘米,BC15 厘米,E、F 分别是所在边的中点求阴影部分 的面积 11如图,长方形 ABCD 是由上、中、下三个长方形拼成的,已知中间长方形的宽正好是上下两个长 方形宽的和那么 S1、S3的面积和与 S4的面积比是 12 正方形 ABCD 中, 已
7、知 CD3FC, BC3EC, 问四边形 ABGD 与正方形 ABCD 的面积比是多少? 13如图中正方形的边长是 24 厘米,BE30 厘米,求 AF 的长 14如图,两个正方形的边长分别是 8 厘米和 10 厘米,求图中阴影部分的面积 15如图:梯形 ABCD 中,ADBC,AC、BD 交于 M,若 SADM1,求:梯形的面 积 16如图,边长为 1 的正方形 ABCD 中,BE2EC,CFFD,求三角形 AEG 的面积 17 如图所示, 将直角三角形中的短直角边, 通过折叠重合到长直角边上, 则图中阴影部分的面积 (未 重叠部分)是多少平方厘米? 18如图,长方形 ABCD 的面积是 2
8、4,三角形 ABE 和三角形 ADF 的面积都是 4,求阴影三角形 AEF 的面积 19如图,正方形 ABCD 中,边长为 12cm,CE2BE,AF2BF,AE、CF 交于点 O,求阴影部分 的面积 20如图,已知 CEAB,DFAB,垂足分别为 E、F,ACDB,ACDB,CE 与 DF 相等吗?为 什么? 21如图,正方形 ABCD 中 AB4,EC10,求阴影部分的面积 22已知如图,三角形 ABC 的面积为 8 平方厘米,AEED,BDBC,求阴影部分的面积 23如图,正方形边长 12 厘米,AE16 厘米,DF 长是多少厘米? 24如图,ABC 分成三部分:CEF,EDB 和平行四
9、边形 ADEF已知CEF 的面积为 20,又 CF:FA2:3AD:DB2:3,求三角形 ABC 的面积 25 在如图长方形 ABCD 中, 三角形 AOB 面积为 30 平方厘米, BO: OD 的比和 EO: OA 的比都是 1: 3,那么,四边形 OECD 的面积是多少平方厘米? 26如图,ABC 中,AD:DB2:1,BE:EC3:1,CF:FA4:1,那么DEF 是ABC 的面 积的几分之几? 27如图,在正方形中,红色与绿色正方形的面积分别是 48 与 12 平方厘米,黄色正方形的两个顶点 均位于两个正方形两条对角线的交点,那么黄色正方形的面积是多少? 28探索与发现: 已知ABC
10、,看图填出(1)、(2)、(3)中的空并解答(4)、(5)中的问题 (1)在图 1 中,若 D1、E1分别是 AB、BC 的中点,则阴影部分与ABC 的面积比等于 (2)在图 2 中,若 D1、D2分别为 AB 的三等分点,E1、E2分别为 BC 的三等分点,则阴影部分与 ABC 的面积比等于 (3)在图 3 中,若 D1、D2、D3分别为 AB 的四等分点,E1、E2、E3分别为 BC 的四等分点,则 阴影部分与ABC 的面积比等于 (4)若设三角形边 AB、BC 的等分点数都为 a,请探索(1)、(2)、(3)中阴影部分与ABC 的面积关系,求出等分点数为 a 时,阴影部分与ABC 的面积
11、比等于多少?(用含 a 的代数式表 示) (5)根据(4)中的结论求出在图 4 中,若 D1、D2、D3,D8分别为 AB 的九等分点,E1、E2、 E3,E8分别为 BC 的九等分点时,阴影部分与ABC 的面积比等于多少? 29如图正方形 ABCD 的边长是 8cm,且 AEAC,FCBC,求图中阴影部分三角形 EFD 的面 积 30如图:长方形 ABCD 的面积是 180 平方分米,三角形 DOE 的面积是 22.5 平方分米,DO7.5 分 米求:CE 的长度; 三角形 AOD 的面积 31如图,把四边形 ABCD 的各边延长,使得 ABBA,BCCB,CDDC,DAAD,得 到一个大的
12、四边形ABCD, 若四边形ABCD 的面积是1, 求四边形ABCD的面积 32在边长为 1 的正方形 ABCD 中,E 是 AB 中点,CE 交 AF 于 M (1)如图 1,当 CFBF 时,求 S四边形AMCD; (2)如图 2,当 CF2BF 时, ; (直接写出结果) 33已知:如图,ABAC,ADAE 求证:BC 六年级奥数专项精品讲义及常考易错题汇编六年级奥数专项精品讲义及常考易错题汇编- -几何图形问题几何图形问题- -相似三角形的相似三角形的 性质问题性质问题 参考答案参考答案 一填空题一填空题 1解:因为 BE:EC1:2,所以 BC5BE, 所以三角形 ABC 的面积为:6
13、318(平方厘米),则三角形 ACD 的面积是 18 平方厘米; 因为 F 是 CD 的中点, 所以三角形 ADF 的面积为:1879(平方厘米), 答:三角形 ADF 的面积是 9 平方厘米 答案:3 2解:根据题干分析可得:EFC 和BFA 相似,相似比是 1:2, (1)相似三角形的面积比等于相似比的平方,所以它们的面积比是 2:4, 所以BFA 的面积为:464(平方厘米), (2)又因为 EF:BF1:3, 所以BFC 的面积为:217(平方厘米), (3)故ABC 的面积为:4+23(平方厘米), 6212(平方厘米), 答:平行四边形 ABCD 的面积是 12 平方厘米 答案:1
14、2 3解:423435(平方厘米) 答:最大的一个三角形的面积是 35 平方厘米 答案:35 4解:连接 EF,AP, 根据题干不难得出CEF 与BEF 面积相等且又同底, 所以它们的底 EF 上的高也相等, 则: CF: AFBE:AE; 而 CF:AFSCFP:SAFP;BE:AESBEP:SAEP; 可得:SCFP:SAFPSBEP:SAEP; 又因为 SCFPSBEP4;所以可得 AP 平分了四边形 AEPFAFPSAEP2; 所以可得:AF:FC6:2,所以 SBAF:SBFC1:7, 所以BPC 的面积为:428412, 答案:12 5解:因为三角形 ABC 与三角形 BDC 面积
15、相等,所以三角形 AOB 与三角形 DOC 面积也相等, 所以三角形 ABD 的面积比三角形 BDC 的面积少 12 平方厘米, 又因为 ADBC, 设三角形 ABD 的面积为 4x,则三角形 BDC 的面积为 5x, 5x5x12 x4, 所以三角形 ABD 的面积为 268,三角形 BDC 的面积为 5720, 所以梯形 ABCD 的面积8+2028 平方厘米 答案:28 6解:因为 FDBC,所以三角形 AFD 与三角形 DEC 相似, 所以 AF:DEFD:EC, 设正方形的边长为 x 厘米, AF:xx:EC, x2AFEC, x2315, x2120, 答:正方形 EDFB 的面积
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021年六年级奥数专项讲义及常考易错题-几何图形问题-相似三角形的性质问题 通用版含答案 2021 六年级 专项 讲义 常考易错题 几何图形 问题 相似 三角形 性质 通用版 答案
链接地址:https://www.77wenku.com/p-189062.html