高考一轮复习数学破题(36大招)
《高考一轮复习数学破题(36大招)》由会员分享,可在线阅读,更多相关《高考一轮复习数学破题(36大招)(218页珍藏版)》请在七七文库上搜索。
1、目 录 目 录1第1关: 极值点偏移问题-对数不等式法2第2关: 参数范围问题常见解题6法6第3关: 数列求和问题解题策略8法9第4关: 绝对值不等式解法问题7大类型13第5关: 三角函数最值问题解题9法19第6关: 求轨迹方程问题6大常用方法24第7关: 参数方程与极坐标问题“考点”面面看37第8关: 均值不等式问题拼凑8法43第9关: 不等式恒成立问题8种解法探析49第10关: 圆锥曲线最值问题5大方面55第11关: 排列组合应用问题解题21法59第12关: 几何概型问题5类重要题型66第13关: 直线中的对称问题4类对称题型69第14关: 利用导数证明不等式问题4大解题技巧71第15关:
2、 函数中易混问题11对76第16关: 三项展开式问题破解“四法”82第17关: 由递推关系求数列通项问题“不动点”法83第18关: 类比推理问题高考命题新亮点87第19关: 函数定义域问题知识大盘点93第20关: 求函数值域问题7类题型16种方法100第21关: 求函数解析式问题7种求法121第22关:解答立体几何问题5大数学思想方法124第23关: 数列通项公式常见9种求法129第24关:导数应用问题9种错解剖析141第25关:三角函数与平面向量综合问题6种类型144第26关:概率题错解分类剖析7大类型150第27关:抽象函数问题分类解析153第28关:三次函数专题全解全析157第29关:二
3、次函数在闭区间上的最值问题大盘点169第30关:解析几何与向量综合问题知识点大扫描178第31关:平面向量与三角形四心知识的交汇179第32关:数学解题的“灵魂变奏曲”转化思想183第33关:函数零点问题求解策略194第34关:求离心率取值范围常见6法199第35关:高考数学选择题解题策略202第36关:高考数学填空题解题策略211 第1关: 极值点偏移问题-对数不等式法我们熟知平均值不等式:即“调和平均数”小于等于“几何平均数”小于等于“算术平均值”小于等于“平方平均值”等号成立的条件是.我们还可以引入另一个平均值:对数平均值:那么上述平均值不等式可变为:对数平均值不等式, 以下简单给出证明
4、:不妨设,设,则原不等式变为:以下只要证明上述函数不等式即可.以下我们来看看对数不等式的作用.题目1:(2015长春四模题)已知函数有两个零点,则下列说法错误的是 A. B. C. D.有极小值点,且【答案】C【解析】函数导函数:有极值点,而极值,A正确.有两个零点:,即:-得:根据对数平均值不等式:,而, B正确,C错误而+得:,即D成立.题目2:(2011辽宁理)已知函数.若函数的图像与轴交于两点,线段中点的横坐标为,证明:【解析】原题目有3问,其中第二问为第三问的解答提供帮助,现在我们利用不等式直接去证明第三问:设,则, -得:,化简得: 而根据对数平均值不等式:等式代换到上述不等式根据
5、:(由得出)式变为: ,在函数单减区间中,即: 题目3:(2010天津理)已知函数 .如果,且.证明:.【解析】原题目有3问,其中第二问为第三问的解答提供帮助,现在我们利用不等式直接去证明第三问:设,则,两边取对数-得: 根据对数平均值不等式题目4:(2014江苏南通市二模)设函数 ,其图象与轴交于两点,且.证明:(为函数的导函数).【解析】根据题意:,移项取对数得:-得:,即: 根据对数平均值不等式:,+得:根据均值不等式:函数在单调递减题目5:已知函数与直线交于两点.求证:【解析】由,可得:,-得: +得:根据对数平均值不等式利用式可得:由题于与交于不同两点,易得出则上式简化为: 第2关:
6、 参数范围问题常见解题6法求解参数的取值范围是一类常见题型近年来在各地的模拟试题以及高考试题中更是屡屡出现学生遇到这类问题,较难找到解题的切入点和突破口,下面介绍几种解决这类问题的策略和方法一、确定“主元”思想常量与变量是相对的,一般地,可把已知范围的那个看作自变量,另一个看作常量例1.对于满足0的一切实数,不等式x2+px4x+p-3恒成立,求x的取值范围分析:习惯上把x当作自变量,记函数y= x2+(p-4)x+3-p,于是问题转化为当p时y0恒成立,求x的范围解决这个问题需要应用二次函数以及二次方程实根分布原理,这是相当复杂的若把x与p两个量互换一下角色,即p视为变量,x为常量,则上述问
7、题可转化为在0,4内关于p的一次函数大于0恒成立的问题解:设f(p)=(x-1)p+x2-4x+3,当x=1时显然不满足题意由题设知当0时f(p)0恒成立,f(0)0,f(4)0即x2-4x+30且x2-10,解得x3或x3或x g(k) g(k) f(x) minf(x)g(k) f(x) maxg(k)f(x)g(k) f(x) max 0,a1,不能用均值不等式求最值,适合用函数在区间内的单调性来求解。设,在(0,1)上为减函数,当t=1时,。 七 数形结合由于,所以从图形考虑,点(cosx,sinx)在单位圆上,这样对一类既含有正弦函数,又含有余弦函数的三角函数的最值问题可考虑用几何方
8、法求得。例9 求函数的最小值。分析 法一:将表达式改写成y可看成连接两点A(2,0)与点(cosx,sinx)的直线的斜率。由于点(cosx,sinx)的轨迹是单位圆的上半圆(如图),所以求y的最小值就是在这个半圆上求一点,使得相应的直线斜率最小。设过点A的切线与半圆相切与点B,则可求得所以y的最小值为(此时).法二:该题也可利用关系式asinx+bcosx=(即引入辅助角法)和有界性来求解。 八 判别式法例10 求函数的最值。分析 同一变量分子、分母最高次数齐次,常用判别式法和常数分离法。解:时此时一元二次方程总有实数解由y=3,tanx=-1,由 九 分类讨论法含参数的三角函数的值域问题,
9、需要对参数进行讨论。例 11 设,用a表示f(x)的最大值M(a).解:令sinx=t,则(1) 当,即在0,1上递增, (2) 当即时,在0,1上先增后减,(3) 当即在0,1上递减, 以上几种方法中又以配方法和辅助角法及利用三角函数的有界性解题最为常见。解决这类问题最关键的在于对三角函数的灵活应用及抓住题目关键和本质所在。第6关: 求轨迹方程问题6大常用方法 知识梳理:(一)求轨迹方程的一般方法: 1. 待定系数法:如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法
10、。 2. 直译法:如果动点P的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P满足的等量关系易于建立,则可以先表示出点P所满足的几何上的等量关系,再用点P的坐标(x,y)表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P运动的某个几何量t,以此量作为参变数,分别建立P点坐标x,y与该参数t的函数关系xf(t),yg(t),进而通过消参化为轨迹的普通方程F(x,y)0。 4. 代入法(相关点法):如果动点P的运动是由另外某一点P的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P(x,y),用(x,y)表示
11、出相关点P的坐标,然后把P的坐标代入已知曲线方程,即可得到动点P的轨迹方程。5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。(二)求轨迹方程的注意事项: 1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P的运动规律,即P点满足的等量关系,因此要学会动中求静,变中求不变。 来表示,若要
12、判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。 3. 求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解,(即以该方程的某些解为坐标的点不在轨迹上),又要检验是否丢解。(即轨迹上的某些点未能用所求的方程表示),出现增解则要舍去,出现丢解,则需补充。检验方法:研究运动中的特殊情形或极端情形。 4求轨迹方程还有整体法等其他方法。在此不一一缀述。课前热身: 1. P是椭圆=1上的动点,过P作椭圆长轴的垂线,垂足为M,则PM中点的轨迹中点的轨迹方程为: ( ) A、 B、 C、 D、=1【答案】:B【解答】:令中点坐标为,则点P 的坐标为(代入椭圆方程得,选B2. 圆心在抛物线上,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 一轮 复习 数学 破题 36
链接地址:https://www.77wenku.com/p-190205.html