2021-2022学年人教版九年级数学上册讲义(教师版)
《2021-2022学年人教版九年级数学上册讲义(教师版)》由会员分享,可在线阅读,更多相关《2021-2022学年人教版九年级数学上册讲义(教师版)(210页珍藏版)》请在七七文库上搜索。
1、目 录第21.1节 一元二次方程及其解法(一)直接开平方法知识讲解1第21.2节 一元二次方程的解法(二)配方法7第21.3节 一元二次方程的解法(三)-公式法,因式分解法15第21.4节 一元二次方程根的判别式及根与系数的关系23第21.5节 一元二次方程的应用32第22.1节 二次函数y=ax2(a0)与y=ax2+c(a0)的图象与性质41第22.2节 二次函数y=a(x-h)2+k(a0)的图象与性质52第22.3节 二次函数y=ax2+bx+c(a0)的图象与性质61第22.4节 待定系数法求二次函数的解析式73第22.5节 用函数观点看一元二次方程81第22.7节 实际问题与二次函
2、数94第23.1节 图形的旋转104第23.2节 中心对称与中心对称图形111第24.1节 圆的基本概念和性质120第24.2节 垂径定理128第24.3节 弧、弦、圆心角、圆周角136第24.4节 点、直线、圆与圆的位置关系146第24.5节 切线长定理157第24.6节 正多边形和圆168第24.7节 弧长和扇形面积、圆锥的侧面展开图181第25.1节 随机事件和概率192第25.2节 概率的计算199第21.1节 一元二次方程及其解法(一)直接开平方法知识讲解 【学习目标】1理解一元二次方程的概念和一元二次方程根的意义,会把一元二次方程化为一般形式;2掌握直接开平方法解方程,会应用此判定
3、方法解决有关问题;3理解解法中的降次思想,直接开平方法中的分类讨论与换元思想.【要点梳理】要点一、一元二次方程的有关概念1一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程要点诠释:识别一元二次方程必须抓住三个条件:(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是2.不满足其中任何一个条件的方程都不是一元二次方程,缺一不可.2一元二次方程的一般形式:一般地,任何一个关于x的一元二次方程,都能化成形如,这种形式叫做一元二次方程的一般形式其中是二次项,是二次项系数;bx是一次项,b是一次项系数;c是常数项要点诠释:(
4、1)只有当时,方程才是一元二次方程;(2)在求各项系数时,应把一元二次方程化成一般形式,指明一元二次方程各项系数时注意不要漏掉前面的性质符号.3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.4.一元二次方程根的重要结论(1)若a+b+c=0,则一元二次方程必有一根x=1;反之也成立,即若x=1是一元二次方程的一个根,则a+b+c=0.(2)若a-b+c=0,则一元二次方程必有一根x=-1;反之也成立,即若x=-1是一元二次方程的一个根,则a-b+c=0.(3)若一元二次方程有一个根x=0,则c=0;反之也成立,若c=0,则一元二次方程必
5、有一根为0.要点二、一元二次方程的解法1直接开方法解一元二次方程:(1)直接开方法解一元二次方程: 利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.(2)直接开平方法的理论依据: 平方根的定义.(3)能用直接开平方法解一元二次方程的类型有两类: 形如关于x的一元二次方程,可直接开平方求解. 若,则;表示为,有两个不等实数根; 若,则x=O;表示为,有两个相等的实数根; 若,则方程无实数根 形如关于x的一元二次方程,可直接开平方求解,两根是 .要点诠释:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可
6、以直接开平方求这个方程的根.【典型例题】类型一、关于一元二次方程的判定1判定下列方程是否关于x的一元二次方程: (1)a2(x2-1)+x(2x+a)=3x+a; (2)m2(x2+m)+2x=x(x+2m)-1【答案与解析】(1)经整理,得它的一般形式 (a2+2)x2+(a-3)x-a(a+1)=0, 其中,由于对任何实数a都有a20,于是都有a2+20,由此可知a2+20,所以可以判定: 对任何实数a,它都是一个一元二次方程(2)经整理,得它的一般形式 (m2-1)x2+(2-2m)x+(m3+1)=0, 其中,当m1且m-1时,有m2-10,它是一个一元二次方程;当m=1时方程不存在,
7、 当m=-1时,方程化为4x=0,它们都不是一元二次方程【总结升华】对于含有参数的一元二次方程,要十分注意二次项系数的取值范围,在作为一元二次方程进行 研究讨论时,必须确定对参数的限制条件如在第(2)题,对参数的限定条件是m1例如,一个关于x的方程,若整理为(m-4)x2+mx-3=0的形式,仅当m-40,即m4时,才是一元二次方程(显然,当m=4时,它只是一个一元一次方程4x-3=0)又如,当我们说:“关于x的一元二次方程(a-1)x2+(2a+1)x+a2-1=0”时,实际上就给出了条件“a-10”,也就是存在一个条件“a1”由于这个条件没有直接注明,而是隐含在其他的条件之中,所以称它为“
8、隐含条件”类型二、一元二次方程的一般形式、各项系数的确定2. 已知关于y的一元二次方程m2(y2+m)-3my=y(8y-1)+1,求出它各项的系数,并指出参数m的取值范围【答案与解析】将原方程整理为一般形式,得(m2-8)y2-(3m-1)y+m3-1=0,由于已知条件已指出它是一个一元二次方程,所以存在一个隐含条件m2-80,即 m可知它的各项系数分别是a=m2-8(m),b=-(3m-1),c=m3-1参数m的取值范围是不等于的一切实数【总结升华】在含参数的方程中,要认定哪个字母表示未知数,哪个字母是参数,才能正确处理有关的问题举一反三:【高清ID号:388447关联的位置名称(播放点名
9、称):一元二次方程的系数与解练习1(3)】【变式】关于x的方程的一次项系数是-1,则a .【答案】原方程化简为x2-ax+1=0,则-a=-1,a=1.类型三、一元二次方程的解(根)3. 关于x的方程a(x+m)2+n=0(a,m,n均为常数,m0)的解是x1=2,x2=3,则方程a(x+m5)2+n=0的解是() Ax1=2,x2=3 Bx1=7,x2=2 Cx1=3,x2=2 Dx1=3,x2=8【答案】D;【思路点拨】把后面一个方程中的x5看作整体,相当于前面一个方程中的x求解.【解析】关于x的方程a(x+m)2+n=0的解是x1=2,x2=3,(m,n,p均为常数,m0),方程a(x+
10、m5)2+n=0变形为a(x5)+m2+n=0,即此方程中x5=2或x5=3,解得x=3或x=8故选D【总结升华】此题主要考查了方程解的定义注意由两个方程的特点进行简便计算举一反三:【高清ID号:388447关联的位置名称(播放点名称):一元二次方程的系数与解练习2】【变式】(1)x=1是的根,则a= .(2)已知关于x的一元二次方程 有一个根是0,求m的值.【答案】(1)当x=1时,1-a+7=0,解得a=8. (2)由题意得类型四、用直接开平方法解一元二次方程 4.解方程(x-3)2=49【答案与解析】把x-3看作一个整体,直接开平方,得 x-3=7或x-3=-7 由x-3=7,得 x=1
11、0 由x-3=-7,得 x=-4 所以原方程的根为x=10或x=-4【总结升华】应当注意,如果把x+m看作一个整体,那么形如(x+m)2=n(n0)的方程就可看作形如x2=k的方 程,也就是可用直接开平方法求解的方程;这就是说,一个方程如果可以变形为这个形式,就可用直接开平方法求出这个方程的根所以,(x+m)2=n可成为任何一元二次方程变形的目标举一反三:【变式】解方程: (1) (3x+2)2=4(x1)2; (2) (x-2)2=25.【答案】解:(1) 3x+2=2(x1),3x+2=2x2或3x+2=2x+2,x1=4;x2=0 (2) (x-2)=5 x-2=5或x-2=-5 x1=
12、7,x2=-3. 【巩固练习】一、选择题1. 方程x2+ax+1=0和x2xa=0有一个公共根,则a的值是() A0 B1 C2 D 32若是一元二次方程,则不等式的解集应是( ). A Ba-2 Ca-2 Da-2且a03若是关于x的一元二次方程的一个根,则代数式的值为( ).A2010 B2011 C2012 D20134已知方程有一个根是,则下列代数式的值恒为常数的是( )Aab B Ca+b Da-b5若,则的值为( )A1 B-5 C1或-5 D06对于形如的方程,它的解的正确表达式是( ).A用直接开平方法解得 B当时,C当时, D当时, 二、填空题7如果关于x的一元二次方程x2+
13、px+q0的两根分别为x12,x21,那么p,q的值分别是 .8)若关于x的一元二次方程(m2)x2+3x+m24=0的常数项为0,则m的值等于 .9已知x1是一元二次方程的一个根,则的值为_10(1)当k_时,关于x的方程是一元二次方程; (2)当k_时,上述方程是一元一次方程11已知a是方程的根,则的值为 12已知是关于的一元二次方程的一个根,则的值为 三、解答题13. 已知m、n都是方程的根,试求代数式(m2+2010m-2010)(n2+2010n+1)的值 14用直接开平方法解下列方程 (1)(x+1)2=4; (2) (2x-3)2=x215已知ABC中,ABc,BCa,AC6,为
14、实数,且,(1)求x的值;(2)若ABC的周长为10,求ABC的面积【答案与解析】一、选择题1【答案】C;【解析】方程x2+ax+1=0和x2xa=0有一个公共根,(a+1)x+a+1=0,解得x=1,当x=1时,a=2,故选C2【答案】D;【解析】解不等式得a-2,又由于a为一元二次方程的二次项系数,所以a0即a-2且a03【答案】C;【解析】 是方程的根,代入方程得, 4. 【答案】D;【解析】由方程根的定义知,把代入方程得,即,而, .5【答案】B;【解析】本题主要考查的是利用一元二次方程的解来探索使分式有意义的值由,得,由分式有意义,可得3,所以当时,故选B6【答案】C;【解析】因为当
15、n是负数时,在实数范围内开平方运算没有意义,当n是非负数时,直接开平方得,解得,故选C二、填空题7【答案】p=-3,q=2;【解析】 x2是方程x2+px+q0的根, 22+2p+q0,即2p+q-4 同理,12+p+q0,即p+q-1 联立,得 解之得:8【答案】m=-2; 【解析】由题意得:m24=0,解得:m=2,m20,m2,m=29【答案】1;【解析】将x1代入方程得m+n-1,两边平方得m2+2mn+n21. 10【答案】(1)1 ; (2)-1.【解析】(1)k2-10, k1 (2)由k2-10,且k-10,可得k-111【答案】20;【解析】由题意可知,从而得,于是 12.【
16、答案】2011.【解析】因为是方程的根,所以,所以,所以三、解答题13.【答案与解析】解:将m、n分别代入中得:, , 14.【答案与解析】 解:(1)两边直接开平方得:x+1=2,得x+1=2,x+1=-2,解得:x1=1,x2=-3 (2) 两边直接开平方得,得2x-3=x,x1=3,x2=115.【答案与解析】 解:(1)代入中得, , ,(2)由(1)知, ,第21.2节 一元二次方程的解法(二)配方法【学习目标】1了解配方法的概念,会用配方法解一元二次方程;2掌握运用配方法解一元二次方程的基本步骤;3通过用配方法将一元二次方程变形的过程,进一步体会转化的思想方法,并增强数学应用意识和
17、能力。【要点梳理】知识点一、一元二次方程的解法-配方法1配方法解一元二次方程:(1)配方法解一元二次方程: 将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)配方法解一元二次方程的理论依据是公式:.(3)用配方法解一元二次方程的一般步骤:把原方程化为的形式;将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;方程两边同时加上一次项系数一半的平方;再把方程左边配成一个完全平方式,右边化为一个常数;若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解.要点诠释:(1)配方法解一元二次方程的口诀:一除
18、二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方.(3)配方法的理论依据是完全平方公式知识点二、配方法的应用1用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值3用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值4用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用要点诠释: “配
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 2022 学年 人教版 九年级 数学 上册 讲义 教师版
链接地址:https://www.77wenku.com/p-190675.html