第22章 二次函数 章末综合检测培优练(含答案)2021-2022学年人教版九年级数学上册
《第22章 二次函数 章末综合检测培优练(含答案)2021-2022学年人教版九年级数学上册》由会员分享,可在线阅读,更多相关《第22章 二次函数 章末综合检测培优练(含答案)2021-2022学年人教版九年级数学上册(45页珍藏版)》请在七七文库上搜索。
1、第二十二章 二次函数一、单选题(每题3分,共30分)1(2021安徽九年级月考)以x为自变量的函数:;是二次函数的有( )ABCD2(2021陕西中考真题)下表中列出的是一个二次函数的自变量x与函数y的几组对应值:-20136-4-6-4下列各选项中,正确的是A这个函数的图象开口向下 B这个函数的图象与x轴无交点C这个函数的最小值小于-6 D当时,y的值随x值的增大而增大3(2021山东东营市中考真题)一次函数与二次函数在同一平面直角坐标系中的图象可能是( )A B C D4(2021山西晋中初三月考)已知关于的二次函数的图象关于直线对称,则下列关系正确的是( )A B C的函数值一定大于的函
2、数值 D若,则当时,5(2021四川眉山市中考真题)在平面直角坐标系中,抛物线与轴交于点,则该抛物线关于点成中心对称的抛物线的表达式为( )A B C D6(2021河北张家口市九年级一模)如图1,一个移动喷灌架喷射出的水流可以近似地看成抛物线图2是喷灌架为一坡地草坪喷水的平面示意图,喷水头的高度(喷水头距喷灌架底部的距离)是1米当喷射出的水流距离喷水头20米时达到最大高度11米,现将喷灌架置于坡度为1:10的坡地底部点O处,草坡上距离O的水平距离为30米处有一棵高度约为2.3米的石榴树AB,因为刚刚被喷洒了农药,近期不能被喷灌下列说法正确的是()A水流运行轨迹满足函数yx2x+1B水流喷射的
3、最远水平距离是40米C喷射出的水流与坡面OA之间的最大铅直高度是9.1米D若将喷灌架向后移动7米,可以避开对这棵石榴树的喷灌7(2021浙江嘉兴市九年级二模)在平面直角坐标系中,已知点,若抛物线与线段有两个不同的交点,则的取值范围是( )A或B或C且D或8(2021浙江杭州市九年级期末)若是关于x的一元二次方程的两根,且,则的大小关系是( )ABCD9(2020山东日照市中考真题)如图,二次函数yax2+bx+c(a0)图象的对称轴为直线x1,下列结论:abc0;3ac;若m为任意实数,则有abmam2+b; 若图象经过点(3,2),方程ax2+bx+c+20的两根为x1,x2(|x1|x2|
4、),则2x1x25其中正确的结论的个数是()A4个B3个C2个D1个 10(2021辽宁营口市九年级一模)如图,菱形的边长为,其中,动点同时从点A都以的速度出发,点沿路线,点沿路线运动连接设运动时间为,的面积为,则下列图像中能大致表示S与的函数关系的是( )ABCD二、填空题(每题3分,共24分)11(2021河南开封市九年级一模)小明周末前往游乐园游玩,他乘坐了摩天轮,摩天轮转一圈,他离地面高度与旋转时之间的关系可以近似地用来刻画如图记录了该摩天轮旋转时和离地面高度的三组数据,根据上述函数模型和数据,可以推断出:当小明乘坐此摩天轮离地面最高时,需要的时间为 秒。12(2020北京门头沟初二期
5、末)阅读理解:由所学一次函数知识可知,在平面直角坐标系内,一次函数ykx+b(k0)的图象与x轴交点横坐标,是一元一次方程kx+b0(k0)的解;在x轴下方的图象所对应的x的所有值是kx+b0(k0)的解集,在x轴上方的图象所对应的x的所有值是kx+b0(k0)的解集例,如图1,一次函数kx+b0(k0)的图象与x轴交于点A(1,0),则可以得到关于x的一元一次方程kx+b0(k0)的解是x1;kx+b0(k0)的解集为x1结合以上信息,利用函数图象解决下列问题:(1)通过图1可以得到kx+b0(k0)的解集为_;(2)通过图2可以得到关于x的一元二次方程ax2+bx+c0(a0)的解为 ;关
6、于x的不等式ax2+bx+c0(a0)的解集为_ 13(2021福建省初三学业考试)已知,两点均在抛物线上点是该抛物线的顶点,若,则的取值范围为_14(2020内蒙古自治区中考真题)在平面直角坐标系中,已知和是抛物线上的两点,将抛物线的图象向上平移n(n是正整数)个单位,使平移后的图象与x轴没有交点,则n的最小值为_15(2021湖北武汉市中考真题)如图(1),在中,边上的点从顶点出发,向顶点运动,同时,边上的点从顶点出发,向顶点运动,两点运动速度的大小相等,设,关于的函数图象如图(2),图象过点,则图象最低点的横坐标是_ 16(2020四川乐山中考真题)我们用符号表示不大于的最大整数例如:,
7、那么:(1)当时,的取值范围是_;(2)当时,函数的图象始终在函数的图象下方则实数的范围是_17(2021江苏泰州市九年级一模)已知二次函数的图像经过点与,关于的方程有两个根,其中一个根是5,若关于的方程有两个整数根,则这两个整数根分别是_18(2021浙江湖州市九年级期末)“水晶晶南浔”的美食文化中以特有的双交面出名,盛面的瓷碗截面图如图1所示,碗体呈抛物线状(碗体厚度不计),点是抛物线的顶点,碗底高cm,碗底宽cm,当瓷碗中装满面汤时,液面宽cm,此时面汤最大深度cm,将瓷碗绕点缓缓倾斜倒出部分面汤,如图2,当时停止,此时液面到_cm;碗内面汤的最大深度是_cm三、解答题(19-24题每题
8、8分,其他每题9分,共66分)19(2021江苏苏州市九年级一模)我们把抛物线上横、纵坐标之和为零的点叫做这条抛物线的“和谐点”(原点除外)(1)已知抛物线,求其顶点A及“和谐点”B的坐标;(2)平移抛物线,若所得新抛物线经过点B,且顶点D是新抛物线的“和谐点”,求新抛物线的表达式20(2021安徽合肥市九年级期末)某跳水运动员在进行跳水训练时,身体(看成一点)在空中的运动路线是如图所示的一条抛物线已知跳板AB长为2米,跳板距水面CD高BC为3米,训练时跳水曲线在离起跳点水平距离1米时达到距水面最大高度4米,现以CD为横轴,CB为纵轴建立直角坐标系(1)求这条抛物线的解析式;(2)求运动员落水
9、点与点C的距离21(2021浙江绍兴市中考真题)小聪设计奖杯,从抛物线形状上获得灵感,在平面直角坐标系中画出截面示意图,如图1,杯体ACB是抛物线的一部分,抛物线的顶点C在y轴上,杯口直径,且点A,B关于y轴对称,杯脚高,杯高,杯底MN在x轴上(1)求杯体ACB所在抛物线的函数表达式(不必写出x的取值范围)(2)为使奖杯更加美观,小敏提出了改进方案,如图2,杯体所在抛物线形状不变,杯口直径,杯脚高CO不变,杯深与杯高之比为0.6,求的长22(2020河北初三其他)某公司计划生产甲、乙两种产品,公司市场部根据调查后得出:甲种产品所获年利润(万元)与投入资金(万元)成正比例;乙种产品所获年利润(万
10、元)与投入资金(万元)的平方成正比例,并得到表格中的数据设公司计划共投入资金(万元)(为常数且)生产甲、乙两种产品,其中投入乙种产品资金为(万元)(其中),所获全年总利润(万元)为与之和(1)分别求和关于的函数关系式;(2)求关于的函数关系式(用含的式子表示);(3)当时,公司市场部预判公司全年总利润的最高值与最低值相差恰好是40万元,请你通过计算说明该预判是否正确;公司从全年总利润中扣除投入乙种产品资金的倍()用于其它产品的生产后,得到剩余利润(万元),若随增大而减小,直接写出的取值范围(万元)2(万元)1(万元)0.123(2021河南郑州九年级月考)某班“数学兴趣小组”对函数的图象和性质
11、进行了探究,探究过程如下,请补充完整x-3-2-10123y30-10-103(1)根据上表数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分;(2)观察函数图象,写出2条函数的性质_(3)进一步探究函数图象发现:方程的实数根为_方程有_个实数根关于x的方程有4个实数根时,a的取值范围_24(2021浙江杭州市九年级二模)二次函数的顶点是直线和直线的交点(1)当时,的值均随的增大而增大,求的取值范围(2)若直线与交于点当时,二次函数的最小值为,求的取值范围和为二次函数上的两个点,当时,求的取值范围25(2021江苏扬州市中考真题)如图,在平面直角坐标系
12、中,二次函数的图像与x轴交于点、,与y轴交于点C(1)_,_;(2)若点D在该二次函数的图像上,且,求点D的坐标;(3)若点P是该二次函数图像上位于x轴上方的一点,且,直接写出点P的坐标26(2021河北保定市九年级一模)疫情期间,按照防疫要求,学生在进校时必须排队接受体温检测某校统计了学生早晨到校情况,发现学生到校的累计人数y(单位:人)可以看作时间x(单位:分钟)的二次函数,其中0x30统计数据如下表:时间x(分钟)051015202530人数y(人)0275500675800875900(1)求出y与x之间的函数关系式(2)如果学生一进学校就开始测量体温,测温点有2个,每个测温点每分钟检
13、测20人,学生按要求排队测温求第多少分钟时排队等待检测体温的人数最多?(3)检测体温到第4分钟时,为减少排队等候时间,在校门口临时增设1个人工体温检测点,已知人工每分钟可检测12人,人工检测多长时间后,校门口不再出现排队等待的情况(直接写出结果)附加题(1-2题,每题5分, 3-4题每题10分,共30分)1(2021河北唐山市九年级一模)如图,抛物线与x轴交于点,把抛物线在x轴及其下方的部分记作,将向左平移得到与x轴交于点,若直线与共有3个不同的交点,则m的取值范围是( )ABCD 2(2021浙江湖州市九年级二模)对某一个函数给出如下定义:若存在实数,对于任意的函数值,都满足,则称这个函数是
14、有界函数,在所有满足条件的中,其最小值称为这个函数的边界值例如,如图中的函数是有界函数,其边界值是1将函数的图象向上平移个单位,得到的函数的边界值满足是时,则的取值范围是_3(2021福建厦门市九年级期末)某海湾有一座抛物线形拱桥,正常水位时桥下的水面宽为(如图所示)由于潮汐变化,该海湾涨潮后达到最高潮位,此最高潮位维持,之后开始退潮如:某日16时开始涨潮,21时达到最高潮位,22时开始退潮该桥的桥下水位相对于正常水位上涨的高度随涨潮时间变化的情况大致如表所示(在涨潮的内,该变化关系近似于一次函数)涨潮时间(单位:)123456桥下水位上涨的高度(单位:)44(1)求桥下水位上涨的高度(单位:
15、)关于涨潮时间(,单位:)的函数解析式;(2)某日涨潮期间,某船务公司对该桥下水面宽度进行了三次测量,数据如表所示:涨潮时间(单位:)桥下水面宽(单位:)现有一艘满载集装箱的货轮,水面以上部分高,宽,在涨潮期间能否安全从该桥下驶过?请说明理由4(2021湖北襄阳市九年级一模)在平面直角坐标系中,抛物线解析式为,直线l:y=x1与x轴交于点A,与y轴交于点B(1)如图1,当抛物线经过点A且与x轴的两个交点都在y轴右侧时,求抛物线的解析式(2)在(1)的条件下,若点P为直线l上方的抛物线上一点,过点P作PQl于Q,求PQ的最大值(3)如图2,点C(2,0),若抛物线与线段AC只有一个公共点,求m的
16、取值范围第二十二章 二次函数一、单选题(每题3分,共30分)1(2021安徽九年级月考)以x为自变量的函数:;是二次函数的有( )ABCD【答案】C【分析】根据二次函数的定义进行判断【详解】解:,符合二次函数的定义,故是二次函数;,符合二次函数的定义,故是二次函数; ,符合二次函数的定义,故是二次函数;,不符合二次函数的定义,故不是二次函数所以,是二次函数的有,故选:C【点睛】本题考查了二次二次函数的定义,熟记概念是解题的关键2(2021陕西中考真题)下表中列出的是一个二次函数的自变量x与函数y的几组对应值:-20136-4-6-4下列各选项中,正确的是A这个函数的图象开口向下 B这个函数的图
17、象与x轴无交点C这个函数的最小值小于-6 D当时,y的值随x值的增大而增大【答案】C【分析】利用表中数据,求得二次函数的解析式,再配成顶点式,根据二次函数的性质逐一分析即可判断【详解】解:设二次函数的解析式为,依题意得:,解得:,二次函数的解析式为=,这个函数的图象开口向上,故A选项不符合题意;,这个函数的图象与x轴有两个不同的交点,故B选项不符合题意;,当时,这个函数有最小值,故C选项符合题意;这个函数的图象的顶点坐标为(,),当时,y的值随x值的增大而增大,故D选项不符合题意;故选:C【点睛】本题主要考查了待定系数法求二次函数的解析式以及二次函数的性质,利用二次函数的性质解答是解题关键3(
18、2021山东东营市中考真题)一次函数与二次函数在同一平面直角坐标系中的图象可能是( )A B C D【答案】C【分析】逐一分析四个选项,根据二次函数图象的开口方向以及对称轴与y轴的位置关系,即可得出a、b的正负性,由此即可得出一次函数图象经过的象限,即可得出结论【详解】A. 二次函数图象开口向下,对称轴在y轴左侧,a0,b0,b0,一次函数图象应该过第一、三、四象限,故本选项错误;C. 二次函数图象开口向下,对称轴在y轴左侧,a0,b0,一次函数图象应该过第二、三、四象限,故本选项正确;D. 二次函数图象开口向下,对称轴在y轴左侧,a0,b0,一次函数图象应该过第二、三、四象限,故本选项错误故
19、选C【点睛】本题主要考查二次函数图象与一次函数图象的综合,掌握二次函数与一次函数系数与图象的关系,是解题的关键4(2021山西晋中初三月考)已知关于的二次函数的图象关于直线对称,则下列关系正确的是( )A B C的函数值一定大于的函数值 D若,则当时,【答案】C【分析】根据函数的对称性,函数图象与x轴交点的个数,抛物线的性质进行依次判断即可.【解析】二次函数的图象关于直线对称,,b=-4,故A错误;不能判断出图象与x轴交点的个数,故不能确定,故B错误;抛物线的对称轴为直线x=2,开口方向向上,故离对称轴近的点低,离对称轴远的点高,故的函数值一定大于的函数值,即C正确;若,则当时,y0,故D错误
20、;故选:C.【点睛】此题考查抛物线的性质,抛物线的对称性,抛物线与x轴交点个数的计算方法,正确理解解析式中各系数与抛物线的性质的关系是解题的关键.5(2021四川眉山市中考真题)在平面直角坐标系中,抛物线与轴交于点,则该抛物线关于点成中心对称的抛物线的表达式为( )A B C D【答案】A【分析】先求出C点坐标,再设新抛物线上的点的坐标为(x,y),求出它关于点C对称的点的坐标,代入到原抛物线解析式中去,即可得到新抛物线的解析式【详解】解:当x=0时,y=5,C(0,5);设新抛物线上的点的坐标为(x,y),原抛物线与新抛物线关于点C成中心对称,由,;对应的原抛物线上点的坐标为;代入原抛物线解
21、析式可得:,新抛物线的解析式为:;故选:A【点睛】本题综合考查了求抛物线上点的坐标、中心对称在平面直角坐标系中的运用以及求抛物线的解析式等内容,解决本题的关键是设出新抛物线上的点的坐标,求出其在原抛物线上的对应点坐标,再代入原抛物线解析式中求新抛物线解析式,本题属于中等难度题目,蕴含了数形结合的思想方法等6(2021河北张家口市九年级一模)如图1,一个移动喷灌架喷射出的水流可以近似地看成抛物线图2是喷灌架为一坡地草坪喷水的平面示意图,喷水头的高度(喷水头距喷灌架底部的距离)是1米当喷射出的水流距离喷水头20米时达到最大高度11米,现将喷灌架置于坡度为1:10的坡地底部点O处,草坡上距离O的水平
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第22章 二次函数 章末综合检测培优练含答案2021-2022学年人教版九年级数学上册 22 二次 函数 综合 检测 培优练 答案 2021 2022 学年 人教版 九年级 数学 上册
链接地址:https://www.77wenku.com/p-191545.html