【人教版】数学九年级下:27.3.2平面直角坐标系中的位似ppt课件
《【人教版】数学九年级下:27.3.2平面直角坐标系中的位似ppt课件》由会员分享,可在线阅读,更多相关《【人教版】数学九年级下:27.3.2平面直角坐标系中的位似ppt课件(30页珍藏版)》请在七七文库上搜索。
1、第二十七章 相 似,导入新课,讲授新课,当堂练习,课堂小结,27.3 位 似,第2课时 平面直角坐标系中的位似,1. 理解平面直角坐标系中,位似图形对应点的坐标之间的联系 2. 会用图形的坐标的变化表示图形的位似变换,掌握把一个图形按一定比例放大或缩小后,点的坐标变化的规律. (重点、难点) 3. 了解四种图形变换 (平移、轴对称、旋转和位似) 的异同,并能在复杂图形中找出来这些变换.,学习目标,导入新课,复习引入,1. 两个相似多边形,如果它们对应顶点所在的直线相交于一点,我们就把这样的两个图形叫做 ,这个交点叫做 位似图形上任意一对对应 点到位似中心的距离之比等于 , 对应线段 .,2.
2、如何判断两个图形是不是位似图形?,位似图形,位似中心,相似比 (或位似比),平行或者在一条直线上,3. 画位似图形的一般步骤有哪些?,4. 基本模型:,我们知道,在直角坐标系中,可以利用变化前后两个多边形对应顶点的坐标之间的关系表示某些平移、轴对称和旋转 (中心对称). 那么,位似是否也可以用两个图形坐标之间的关系来表示呢?,讲授新课,1. 在平面直角坐标系中,有两点 A (6,3),B (6,0)以原点 O 为位似中心,相似比为 ,把线段 AB 缩小,观察对应点之间坐标的变化.,合作探究,2,4,6,4,6,B,2,4,4,x,y,A,B,A,A“,B“,O,如图,把 AB 缩小后 A,B
3、的对应点为 A ( , ), B ( , ); A“ ( , ), B“ ( , ).,2,1,2,0,2,1,2,0,2. ABC 三个顶点坐标分别为 A (2,3),B (2,1),C (5,2),以点 O 为位似中心,相似比为 2,将 ABC 放大,观察对应顶点坐标的变化.,如图,把 ABC 放大后 A,B,C 的对应点为 A ( , ),B ( , ),C ( , ); A“ ( , ),B“ ( , ),C“ ( , ).,4,6,4,2,10,4,4,6,4,2,10,4,问题1 在平面直角坐标系中,以原点为位似中心作一个图形的位似图形可以作几个?问题2 所作位似图形与原图形在原点
4、的同侧,那么对应顶点的坐标的比与其相似比是何关系?如果所作位似图形与原图形在原点的异侧呢?,1. 在平面直角坐标系中,以原点为位似中心作一个图形的位似图形可以作两个 2. 当位似图形在原点同侧时,其对应顶点的坐标的比为 k;当位似图形在原点两侧时,其对应顶点的坐标的比为k 3. 当 k1 时,图形扩大为原来的 k 倍;当 0k1时,图形缩小为原来的 k 倍,归纳:,1. 如图,线段 AB 两个端点的坐标分别为 A (4,4),B (6,2),以原点 O 为位似中心,在第一象限内将线段 AB 缩小为原来的 1/2 后得到线段 CD,则端点 D 的坐标为 ( )A. (2,2) B. (2,1)
5、C. (3,2) D. (3,1),练一练,D,2. ABC 三个顶点 A (3,6),B (6,2),C (2,1),以原点为位似中心,得到的位似图形 ABC 三个顶点分别为 A (1,2),B (2, ),C ( , ),则 ABC 与 ABC 的位似比是 .,1 : 3,典例精析,例1 如图,在平面直角坐标系中,ABO 三个顶点的坐标分别为 A (2,4),B (2,0),O (0,0). 以原点 O 为位似中心,画出一个三角形使它与 ABO 的相似比为 3 : 2.,提示:画三角形关键 是确定它各顶点的坐 标. 根据前面的归纳 可知,点 A 的对应点 A 的坐标为, 即(3,6),类似
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 数学 九年级 27.3
链接地址:https://www.77wenku.com/p-19813.html