【人教版】数学九年级下:27.2.3相似三角形应用举例ppt课件
《【人教版】数学九年级下:27.2.3相似三角形应用举例ppt课件》由会员分享,可在线阅读,更多相关《【人教版】数学九年级下:27.2.3相似三角形应用举例ppt课件(31页珍藏版)》请在七七文库上搜索。
1、,导入新课,讲授新课,当堂练习,课堂小结,27.2 相似三角形,第二十七章 相 似,27.2.3 相似三角形应用举例,学习目标,1. 能够利用相似三角形的知识,求出不能直接测量的物体的高度和宽度. (重点) 2. 进一步了解数学建模思想,能够将实际问题转化为相似三角形的数学模型,提高分析问题、解决问题的能力. (难点),乐山大佛,导入新课,图片引入,世界上最高的树 红杉,台湾最高的楼台北101大楼,世界上最宽的河亚马逊河,怎样测量河宽?,讲授新课,据传说,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形,来测量金字塔的高度.,例1
2、 如图,木杆 EF 长 2 m,它的影长 FD 为3m,测得 OA 为 201 m,求金字塔的高度 BO.,怎样测出 OA 的长?,解:太阳光是平行的光线,因此 BAO =EDF.,又 AOB =DFE = 90,ABO DEF., ,,=134 (m).,因此金字塔的高度为 134 m.,表达式:物1高 :物2高 = 影1长 :影2长,测高方法一:,测量不能到达顶部的物体的高度,可以用“在同一时刻物高与影长成正比例”的原理解决.,归纳:,1. 如图,要测量旗杆 AB 的高度,可在地面上竖一根竹竿 DE,测量出 DE 的长以及 DE 和 AB 在同一时刻下地面上的影长即可,则下面能用来求AB长
3、的等式是 ( ) A B C D,C,练一练,2. 如图,九年级某班数学兴趣小组的同学想利用所学数学知识测量学校旗杆的高度,当身高 1.6 米的楚阳同学站在 C 处时,他头顶端的影子正好与旗杆顶端的影子重合,同一时刻,其他成员测得 AC = 2 米,AB = 10 米,则旗杆的高度是_米,8,A,F,E,B,O,还可以有其他测量方法吗?,=,ABOAEF,OB =,平面镜,想一想:,测高方法二:,测量不能到达顶部的物体的高度,也可以用“利用镜子的反射测量高度”的原理解决.,如图是小明设计用手电来测量某古城墙高度的示意图,点 P 处放一水平的平面镜,光线从点 A出发经平面镜反射后,刚好射到古城墙
4、的顶端 C 处,已知 AB = 2 米,且测得 BP = 3 米,DP = 12 米,那么该古城墙的高度是 ( ) A. 6米 B. 8米 C. 18米 D. 24米,B,试一试:,例2 如图,为了估算河的宽度,我们可以在河对岸选定一个目标点 P,在近岸取点 Q 和 S,使点 P,Q,S共线且直线 PS 与河垂直,接着在过点 S 且与 PS 垂直的直线 a 上选择适当的点 T,确定 PT 与过点 Q 且垂直 PS 的直线 b 的交点 R. 已知 测得QS = 45 m,ST = 90 m, QR = 60 m,请根据这些数据, 计算河宽 PQ.,PQ90 = (PQ+45)60. 解得 PQ
5、= 90. 因此,河宽大约为 90 m.,解:PQR =PST =90,P=P,,PQRPST., ,,即 ,,45m,90m,60m,例3 如图,为了估算河的宽度,我们可以在河对岸选定一个目标作为点 A,再在河的这一边选点 B 和 C,使 ABBC,然后,再选点 E,使 EC BC ,用视线确定 BC 和 AE 的交点 D,此时如果测得 BD120米,DC60米,EC50米, 求两岸间的大致距离 AB,解: ADBEDC,,ABCECD90,, ABDECD., ,即 ,,解得 AB = 100.,因此,两岸间的大 致距离为 100 m.,测量如河宽等不易直接测量的物体的宽度,常构造相似三角
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 数学 九年级 27.2
链接地址:https://www.77wenku.com/p-19830.html