江苏省南京市六合区2021-2022学年九年级上期中数学试题(含答案解析)
《江苏省南京市六合区2021-2022学年九年级上期中数学试题(含答案解析)》由会员分享,可在线阅读,更多相关《江苏省南京市六合区2021-2022学年九年级上期中数学试题(含答案解析)(26页珍藏版)》请在七七文库上搜索。
1、江苏省南京市六合区江苏省南京市六合区 2021-2022 学年九年级上期中数学试题学年九年级上期中数学试题 一、选择题(本大题共一、选择题(本大题共 6 小题,每小题小题,每小题 2 分,共分,共 12 分在每小题所给出的四个选项中,恰有分在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置答题卡相应位置上)上) 1. 下列为一元二次方程的是( ) A. 2xy2 B. 2x2x C. 2xx27 D. x1y7 2. 方程 x2x0 的解是( ) A. x1x20 B. x1x21 C. x10
2、,x21 D. x10,x21 3. 下列说法中,正确的是( ) A. 同心圆的周长相等 B. 面积相等的圆是等圆 C. 相等的圆心角所对的弧相等 D. 平分弧的弦一定经过圆心 4. 标标抛掷一枚点数从 16的正方体骰子 12次,有 7次 6 点朝上当他抛第 13 次时, 6点朝上的概率为( ) A 113 B. 712 C. 512 D. 16 5. 甲、乙两位同学连续五次的数学成绩如下图所示: 下列说法正确的是( ) A. 甲的平均数是 70 B. 乙的平均数是 80 C. S2甲S2乙 D. S2甲S2乙 6. 如图,点 O 是 ABC的内切圆的圆心,OAC40,则BOC 的度数为( )
3、 A. 80 B. 100 C. 130 D. 140 二、填空题(本大题共二、填空题(本大题共 10 小题,每小题小题,每小题 2 分,共分,共 20 分请把答案填写在分请把答案填写在答题卡相应位置答题卡相应位置上)上) 7. 一元二次方程22240 xaxa有一个根为 0,则 a 的值为_ 8. 已知O的半径为 3cm,直线 l上有一点 P,OP=3cm,则直线 l与O 的位置关系为_ 9. 电影长津湖首映当日票房已经达到 2.06 亿元,2天后当日票房达到 4.38 亿元,设平均每天票房增长率为 x,则可列方程为_ 10. 超市决定招聘一名广告策划人员,某应聘者三项素质测试的成绩如下表:
4、 测试项目 创新能力 综合知识 语言表达 测试成绩/分 70 90 80 将创新能力、 综合知识和语言表达三项测试成绩按 532的比例计入总成绩, 则该应聘者的总成绩是_分 11. 如图,转盘中有 6个面积都相等的扇形,任意转动转盘 1次,当转盘停止转动时,“指针所落扇形中的数为偶数”发生的概率为_ 12. 如图,AB是Oe的弦,C 是AB的中点,OC交AB于点 D若8cm,2cmABCD,则Oe的半径为_cm 13. 已知关于 x 的一元二次方程 x2+2kx10有两个相等的实数根,则 k 的值是_ 14. 如图,四边形ABCD中,AB、CD分别与以AD为直径的半圆O切于点A、D,BC切半圆
5、O于点E,若15cmBC ,9cmCD,则AB _cm 15. 若点 O是ABC 的外心,且BOC=70 ,则BAC 的度数为_ 16. 如图,在 Rt ABC 中,ACB90 ,AC4,BC3点 P是 ABC 内部一个动点,且满足PACPCB,则线段 BP长的最小值是_ 三、解答题(本大题共三、解答题(本大题共 11 小题,共小题,共 88 分请在分请在答题卡指定区域答题卡指定区域内作答,解答时应写出文字说内作答,解答时应写出文字说明、证明过程或演算步骤)明、证明过程或演算步骤) 17. 解方程: (1)2420 xx; (2)2(2)3(2)xx 18. 已知关于 x 的方程 x23xm3
6、0 总有两个不相等的实数根 (1)求 m的取值范围; (2)若它的一个实数根是 2,求 m的值和另一个实数根 19. (1)比较2x与223xx的大小; (2)比较22x与223xx的大小 20. 某校组织初三学生电脑技能竞赛,每班选派相同人数去参加竞赛,竞赛成绩分 A、B、C、D 四个等级,其中相应等级的得分依次记为 100分,90 分,80分,70 分将初三(1)班和(2)班的成绩整理并绘制成统计图如下: 平均数(分) 中位数(分) 众数(分) 187.5 90 班 2班 100 (1)此次竞赛中(2)班成绩在 C 级以上(包括 C级)的人数为 ; (2)请你将表格补充完整; (3)试运用
7、所学统计知识,从两个不同角度评价初三(1)班和初三(2)班的成绩 21. (1)某地铁站有 1 号、2号两个出口,甲、乙、丙三位同学各自随机选择其中的一个出口出站,求三位同学在相同出口出站的概率 (2)甲、乙、丙、丁四位同学分别站在正方形场地的四个顶点 A、B、C、D处,每个人都以相同的速度沿着正方形的边同时出发随机走向相邻的顶点处,那么甲、乙、丙、丁四位同学互不相遇的概率是 22. 如图,要设计一幅宽 20 cm,长 40 cm的图案,其中有两横两竖的彩条,横、竖彩条的宽度比为 1:2.如果要使得彩条之外的面积为 512 cm2,求设计横彩条的宽度 23. 如图,AB 是O的直径,AC、BC
8、分别交O于点 D、E,连 DE,AD=BE 求证: (1)DEAB; (2)DC=EC 24. 商场销售一批衬衫,平均每天可售出 30 件,每件盈利 45 元为了扩大销售,增加盈利,商场采取降价措施假设在一定范围内,衬衫的单价每降 1 元,商场平均每天可多售出 2件如果降价后商场销售这批衬衫每天盈利 1 800元,那么这种衬衫每件的价格应降价多少元? 25. 如图,点 A 在O上,用无刻度的直尺在O上画出 B、C 两点,满足下列要求: (1)在图中,使得 ABC 为直角三角形; (2)在图中,使得 ABC 为等腰三角形 26. 如图,在ABC中,ABAC5,BC6,D 为 BC 的中点,点 P
9、 在射线 AD 上,P 与直线 AB 相切,切点为 E (1)求证:P与直线 AC相切 (2)当P是ABC内切圆时,求P的半径 27. 如图,在矩形 ABCD中,AB6cm,BC12cm.点 M从 A 点出发沿 AB以 1cm/s速度向 B 点运动;同时点 N从 B 点出发沿 BC 以 2cm/s 的速度向 C 点运动.当其中一点到达终点时,另一点也停止运动.设点 M、N的运动时间为 t秒. (1)当 t为何值时,MN29cm? (2)当 t为何值时,MN的长度最短,最短长度是多少? (3)当 t为何值时,DMN为等腰三角形 江苏省南京市六合区江苏省南京市六合区 2021-2022 学年九年级
10、上期中数学试题学年九年级上期中数学试题 一、选择题(本大题共一、选择题(本大题共 6 小题,每小题小题,每小题 2 分,共分,共 12 分在每小题所给出的四个选项中,恰有分在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置答题卡相应位置上)上) 1. 下列为一元二次方程的是( ) A. 2xy2 B. 2x2x C. 2xx27 D. x1y7 【答案】C 【解析】 【分析】本题根据一元二次方程的定义解答,即含有一个未知数且未知数的最高次数为 2的等式 【详解】解:A、含有两个未知数且最高次数为
11、 1,故不是一元二次方程,不符合题意; B、不是等式,故不是一元二次方程,不符合题意; C、2xx27,是含有未知数的等式且最高次数为 2,故是一元二次方程,符合题意; D、含有两个未知数,故不是一元二次方程,不符合题意; 故选:C 【点睛】本题主要考查一元二次方程的定义,解题的关键是掌握判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是 2 2. 方程 x2x0 的解是( ) A. x1x20 B. x1x21 C. x10,x21 D. x10,x21 【答案】C 【解析】 【分析】根据因式分解法即可求解 【详解】x2x0 x(x
12、-1)=0 x=0或 x-1=0 x10,x21 故选 C 【点睛】此题主要考查解一元二次方程,解题的关键是熟知因式分解法的运用 3. 下列说法中,正确的是( ) A. 同心圆的周长相等 B. 面积相等的圆是等圆 C. 相等的圆心角所对的弧相等 D. 平分弧的弦一定经过圆心 【答案】B 【解析】 【分析】A、周长相等的两个圆,半径就相等,就能重合,所以是等圆,不是同心圆; B、利用等圆的条件进行分析解答; C、在同圆或等圆中,相等的圆心角所对的弧相等,不能缺少“在同圆或等圆中”这个条件; D、根据垂径定理即可得出结论 【详解】解:A、圆心相同,半径不相等的圆是同心圆,所以周长不相等,故此选项错
13、误,不符合题意; B、面积相等的圆半径一定相等,所以是等圆,故此选项正确,符合题意; C、在同圆或等圆中相等的圆心角所对的弧相等,故此选项错误,不符合题意; D、平分弧的弦不一定经过圆心,故此选项错误,不符合题意 故选:B 【点睛】本题考查的是对圆的认识,主要考查的是直径,弦,弧,半圆,等弧,等圆,这几个基本概念对这几个基本概念作出正确的理解,然后进行判断 4. 标标抛掷一枚点数从 16的正方体骰子 12次,有 7次 6 点朝上当他抛第 13 次时, 6点朝上的概率为( ) A. 113 B. 712 C. 512 D. 16 【答案】D 【解析】 【分析】根据随机事件概率大小的求法,找准两点
14、: 符合条件的情况数目; 全部情况的总数 二者的比值就是其发生的概率的大小 【详解】解:掷一颗均匀的骰子(正方体,各面标1 6这 6个数字) ,一共有 6种等可能的情况,其中 6 点朝上只有一种情况, 所以 6 点朝上概率为16 故选:D 【点睛】本题考查概率的求法与运用,解题的关键是掌握一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)mn 5. 甲、乙两位同学连续五次的数学成绩如下图所示: 下列说法正确的是( ) A. 甲的平均数是 70 B. 乙的平均数是 80 C. S2甲S2乙 D. S2甲S2乙 【答案】D 【解析】 【分析
15、】根据折线统计图中的信息分别计算甲、乙的平均数和方差,即可求得答案 【详解】由条形统计图可知,甲的平均数是16070706080 =685,故 A选项不正确; 乙的平均数是17080807090 =785,故 B选项不正确; 甲的方差为22212 60682 70688068556, 乙的方差为22212 70782 80789078565, 故 C 选项不正确,D 选项正确; 故选 D 【点睛】本题考查了折线统计图,求平均数,求方差,从统计图获取信息是解题的关键 6. 如图,点 O 是ABC的内切圆的圆心,OAC40,则BOC 的度数为( ) A. 80 B. 100 C. 130 D. 1
16、40 【答案】C 【解析】 【分析】利用内心的性质得,12OACBAC,12OBCABC,12OCBACB,再根据三角形内角和计算出OBCOCB,然后再利用三角形内角和计算BOC的度数 【详解】OQ是ABCV的内心, OA平分BAC,OB平分ABC,OC平分ACB, 12OACBAC,12OBCABC,12OCBACB, 180BACABCACBQ, 90OACOBCOCB, 904050OBCOCB, 180()18050130BOCOBCOCB 故选:C 【点睛】此题主要考查了三角形内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角 二、填空题(本
17、大题共二、填空题(本大题共 10 小题,每小题小题,每小题 2 分,共分,共 20 分请把答案填写在分请把答案填写在答题卡相应位置答题卡相应位置上)上) 7. 一元二次方程22240 xaxa有一个根为 0,则 a 的值为_ 【答案】2 【解析】 【分析】将 0代入一元二次方程解出a ,即可求解 【详解】解:一元二次方程22240 xaxa有一个根为 0, 240a ,解得:2a 或2a , 20a , 2a 故答案为:2 【点睛】本题主要考查了一元二次方程的解的定义,解题的关键是熟练掌握使方程左右两边同时成立的未知数的值就是方程的解 8. 已知O的半径为 3cm,直线 l上有一点 P,OP=
18、3cm,则直线 l与O 的位置关系为_ 【答案】相切或相交 【解析】 【详解】 试题分析: 根据直线与圆的位置关系来判定 判断直线和圆的位置关系: 直线 l 和O 相交dr;直线 l 和O 相切d=r;直线 l 和O 相离dr 分 OP 垂直于直线 l,OP 不垂直直线 l 两种情况讨论 当 OP 垂直于直线 l 时,即圆心 O 到直线 l 的距离 d=3cm=r,O 与 l 相切; 当 OP 不垂直于直线 l 时,即圆心 O 到直线 l 的距离 d3cm=r,O 与直线 l 相交 所以直线 l 与O 的位置关系是相切或相交 考点:直线与圆的位置关系 9. 电影长津湖首映当日票房已经达到 2.
19、06 亿元,2天后当日票房达到 4.38 亿元,设平均每天票房的增长率为 x,则可列方程为_ 【答案】2.06(1x)24.38 【解析】 【分析】设平均每天票房的增长率为 x,根据当日票房已经达到 2.06 亿元,2 天后当日票房达到 4.38亿元,即可得出关于 x 的一元二次方程,此题得解 【详解】解:设平均每天票房的增长率为 x, 根据题意得:2.06(1x)24.38 故答案为:2.06(1x)24.38 【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键 10. 超市决定招聘一名广告策划人员,某应聘者三项素质测试的成绩如下表: 测试项目 创
20、新能力 综合知识 语言表达 测试成绩/分 70 90 80 将创新能力、 综合知识和语言表达三项测试成绩按 532的比例计入总成绩, 则该应聘者的总成绩是_分 【答案】78 【解析】 【分析】根据该应聘者的总成绩=创新能力 所占的比值+综合知识 所占的比值+语言表达 所占的比值即可求得 【详解】解:根据题意,该应聘者的总成绩是:53270908078101010(分) 故答案为78 【点睛】此题考查加权平均数,解题的关键是熟记加权平均数的计算方法 11. 如图,转盘中有 6个面积都相等的扇形,任意转动转盘 1次,当转盘停止转动时,“指针所落扇形中的数为偶数”发生的概率为_ 【答案】23 【解析
21、】 【分析】直接利用概率公式求解即可 【详解】解:根据题意可得:指针指向的可能情况有 6种,而其中是偶数的有 4种, “指针所落扇形中的数为偶数”发生的概率为4263, 故答案为:23 【点睛】本题考查了概率公式:随机事件A的概率P(A)事件A可能出现的结果数除以所有可能出现的结果数 12. 如图,AB是Oe的弦,C 是AB的中点,OC交AB于点 D若8cm,2cmABCD,则Oe的半径为_cm 【答案】5 【解析】 【分析】连接 OA,由垂径定理得 AD=4cm,设圆的半径为 R,根据勾股定理得到方程2224(2)RR,求解即可 【详解】解:连接 OA, C 是AB的中点, OCAB 14c
22、m2ADAB 设Oe的半径为 R, 2cmCD (2)cmODOCCDR 在Rt OAD中,222OAADOD,即2224(2)RR, 解得,5R 即Oe的半径为 5cm 故答案为:5 【点睛】本题考查的是垂径定理及勾股定理,根据垂径定理判断出 OC是 AB的垂直平分线是解答此题的关键 13. 已知关于 x 的一元二次方程 x2+2kx10有两个相等的实数根,则 k 的值是_ 【答案】k1 【解析】 【分析】根据根的判别式计算即可; 【详解】一元二次方程 x2+2kx10 有两个相等的实数根, 224440backV, k1 故答案是:k 1 【点睛】本题主要考查了根据根的判别式求参数,准确计
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省 南京市 六合 2021 2022 学年 九年级 上期 数学试题 答案 解析
链接地址:https://www.77wenku.com/p-200566.html