【最后十套】2021年高考名校考前提分仿真数学理科试卷(三)含答案解析
《【最后十套】2021年高考名校考前提分仿真数学理科试卷(三)含答案解析》由会员分享,可在线阅读,更多相关《【最后十套】2021年高考名校考前提分仿真数学理科试卷(三)含答案解析(20页珍藏版)》请在七七文库上搜索。
1、【最后十套】2021年高考名校考前提分仿真卷理科数学(三)注意事项:1答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。2选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。3非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。4考试结束后,请将本试题卷和答题卡一并上交。第卷(选择题)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1已知集合,则( )ABCD2若,则( )A1
2、BC2D3已知函数在处的导数为,则等于( )ABCD4某产品的广告费用与销售额的统计数据如下表:广告费用(万元)4235销售额(万元)49263954根据上表可得回归方程中的为,据此模型预报广告费用为6万元时销售额为( )A万元B万元C万元D万元5如图,网格纸上的小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的体积为( )ABCD6我国古代很早就有对等差数列和等比数列的研究成果北宋大科学家沈括在梦溪笔谈中首创的“隙积术”,就是关于高阶等差数列求和的问题现有一物品堆,从上向下数,第一层有1个货物,第二层比第一层多2个,第三层比第二层多3个,以此类推记第层货物的个数为,则数列的前20
3、21项和为( )ABCD7已知圆,若圆上的点到直线与直线的距离之和的最小值为1,则实数的取值范围是( )ABCD8若关于的方程在区间上有且只有一个解,则的值不可能为( )ABCD09已知是抛物线的焦点,是的准线上一点,面积为的等边的顶点恰在抛物线上,则等于( )ABCD10已知P是圆外一点,过P作圆C的两条切线,切点分别为A,B,则的最小值为( )ABC2D11将正奇数数列1,3,5,7,9,依次按两项、三项分组,得到分组序列如下:,称为第1组,为第2组,依次类推,则原数列中的2021位于分组序列中( )A第404组B第405组C第808组D第809组12定义在上的函数满足,对任意的,恒有,则
4、关于x的不等式的解集为( )ABCD第卷(非选择题)二、填空题:本大题共4小题,每小题5分13的展开式中含项的系数为_14在ABC中,角A,B,C的对边分别为a,b,c,已知,则_15中国古代数学家刘徽所注释的九章算术中,称四个面均为直角三角形的四面体为“鳖臑”如图所示的鳖臑中,面,若,且顶点均在球上,则球的表面积为_16已知函数,若存在实数,使得成立,则实数_三、解答题:本大题共6个大题,共70分解答应写出文字说明、证明过程或演算步骤17(12分)在钝角中,角,所对的边分别是,且(1)求的值;(2)若的外接圆半径为,求的面积18(12分)如图,线段为圆锥的底面圆的直径,为底面圆周上异于,的动
5、点,点为的中点(1)证明:平面平面;(2)若圆锥的母线与底面圆所成角为,为弧的中点,求平面与平面所成锐二面角的余弦值19(12分)手机芯片是一种硅板上集合多种电子元器件实现某种特定功能的电路模块,是电子设备中最重要的部分,承担着运输和存储的功能某公司研发了一种新型手机芯片,该公司研究部门从流水线上随机抽取100件手机芯片,统计其性能指数并绘制频率分布直方图(如图1):产品的性能指数在的称为A类芯片,在的称为B类芯片,在的称为C类芯片,以这100件芯片的性能指数位于各区间的频率估计芯片的性能指数位于该区间的概率(1)在该流水线上任意抽取3件手机芯片,求C类芯片不少于2件的概率;(2)该公司为了解
6、年营销费用x(单位:万元)对年销售量y(单位:万件)的影响,对近5年的年营销费用;和年销售量(i=1,2,3,4,5)数据做了初步处理,得到的散点图如图2所示(i)利用散点图判断,和(其中c,d为大于0的常数)哪一个更适合作为年营销费用和年销售量的回归方程类型(只要给出判断即可,不必说明理由);(ii)对数据作出如下处理:令,得到相关统计量的值如下表:150725550015750162556824根据(i)的判断结果及表中数据,求y关于x的回归方程;(iii)由所求的回归方程估计,当年营销费用为100万元时,年销量y(万件)的预报值(参考数据:)参考公式:对于一组数据,其回归直线的斜率和截距
7、最小二乘估计分别为,20(12分)已知椭圆的两个焦点与短轴的两个顶点围成一个正方形,且在椭圆上(1)求椭圆的方程;(2),是椭圆上异于的两点,设直线,斜率分别为,点到直线的距离为,若,求以的最大值为直径的圆的面积21(12分)已知函数(1)若曲线在点处的切线与曲线相切,求的值;(2)若函数的图象与轴有且只有一个交点,求的取值范围请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分22(10分)【选修4-4:坐标系与参数方程】在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系在极坐标系中,设点为曲线上的任意一点,点在射线上,且满足,记点的轨迹为(1)求曲线的直角坐标方程;
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最后十套 最后 2021 年高 名校 前提 分仿真 数学 理科 试卷 答案 解析
链接地址:https://www.77wenku.com/p-202641.html