2022届高三数学一轮复习考点02:充要条件与量词(原卷版)
《2022届高三数学一轮复习考点02:充要条件与量词(原卷版)》由会员分享,可在线阅读,更多相关《2022届高三数学一轮复习考点02:充要条件与量词(原卷版)(6页珍藏版)》请在七七文库上搜索。
1、考点 02 充要条件与量词 【命题解读】【命题解读】 充要条件.高考对命题及其关系和充分条件、必要条件的考查,主要命题形式是选择题.由于知识载体丰富,因此题目有一定综合性,属于中、低档题命题重点主要集中在以函数、方程、不等式、立体几何线面关系、数列等为背景的充分条件和必要条件的判定 关于存在性命题与全称命题,一般考查命题的否定 【基础知识回顾基础知识回顾】 1、 充分条件与必要条件 (1)充分条件、必要条件与充要条件的概念 若 pq,则 p 是 q 的充分条件,q 是 p 的必要条件 p 是 q 的充分不必要条件 pq 且 qp p 是 q 的必要不充分条件 pq 且 qp p 是 q 的充要
2、条件 pq p 是 q 的既不充分也不必要条件 pq 且 qp (2)从集合的角度: 若条件 p,q 以集合的形式出现,即 Ax|p(x),Bx|q(x),则由 AB 可得,p 是 q 的充分条件,请写出集合 A,B 的其他关系对应的条件 p,q 的关系 提示 若 AB,则 p 是 q 的充分不必要条件; 若 AB,则 p 是 q 的必要条件; 若 AB,则 p 是 q 的必要不充分条件; 若 AB,则 p 是 q 的充要条件; 若 AB 且 AB,则 p 是 q 的既不充分也不必要条件 2、全称量词与全称命题 (1)全称量词:短语“所有的”“任意一个”在逻辑中通常叫作全称量词 (2)全称命题
3、:含有全称量词的命题 (3)全称命题的符号表示: 形如“对 M 中的任意一个 x,有 p(x)成立”的命题,用符号简记为xM,p(x) 3、存在量词与特称命题 (1)存在量词:短语“存在一个”“至少有一个”在逻辑中通常叫作存在量词 (2)特称命题:含有存在量词的命题 (3)特称命题的符号表示: 形如“存在 M 中的元素 x0,使 p(x0)成立”的命题,用符号简记为x0M,p(x0) 1、命题“xR R,x2x0”的否定是( ) Ax0R R,x20 x00 Bx0R R,x20 x00 CxR R,x2x0 DxR R,x2x0 2、“(x1)(x2)0”是“x1”的( ) A充分不必要条件
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 届高三 数学 一轮 复习 考点 02 充要条件 量词 原卷版
链接地址:https://www.77wenku.com/p-202839.html