2022年高考数学理科一轮复习《线面平行与垂直》基础练+能力练+真题练(含答案解析)
《2022年高考数学理科一轮复习《线面平行与垂直》基础练+能力练+真题练(含答案解析)》由会员分享,可在线阅读,更多相关《2022年高考数学理科一轮复习《线面平行与垂直》基础练+能力练+真题练(含答案解析)(16页珍藏版)》请在七七文库上搜索。
1、线面平行与垂直1(2021全国高三其他模拟),是三条不同的直线,是两个不同的平面,则下列判断正确的是( )A若,则B若,则C若,两两相交,且交于同一点,则,共面D若,则2(2020全国高三一模(理)已知a,b是两条不同的直线,是两个不同的平面,且a,b,a,b,则“ab“是“”的( )A充分不必要条件B必要不充分条件3(2018全国(理)设为空间两条不同的直线,为空间两个不同的平面,给出下列命题:若,则;若,则;若,则;若,则.其中正确命题的个数是A1B2C3D44(2012全国高三一模(理)若是空间三条不同的直线, 是空间两个不同的平面,则下列命题中,命题不正确的是A当时,若 ,则B当时,若
2、 ,则C当且是在内的射影时,若,则D当且 时,若,则 5(2021扬州大学附属中学东部分校高一期中)已知直线,和平面,下列命题中正确的是( )A若,则B若,C若,则D若,则或6(2021云南省南涧县第一中学高二期中(理)两个不同的平面与平行的一个充分条件是( )A内存在无数条直线与平行B内存在直线与内的无数条直线都平行C平面且平面D平面且平面7(2021上海市亭林中学高二期中)一个正方体的展开如图所示,点,为原正方体的顶点,点为原正方体一条棱的中点,那么在原来的正方体中,直线与所成角的余弦值为( )ABCD8(2021扬州大学附属中学东部分校高一期中)如图,在正方体中,为上底面的中心,直线与平
3、面所成角的正切值等于( )A2BCD9(2021贵州贵阳高三开学考试(理)如图甲,在梯形中,、分别为、的中点,以为折痕把折起,使点不落在平面内(如图乙),那么在以下3个结论中,正确结论的个数是( )平面;平面;平面.A0B1C2D310(2021浙江高三月考)九章算术中将底面为直角三角形且侧棱垂直于底面的三棱柱称为“堑堵”;底面为矩形,一条侧棱垂直于底面的四棱锥称之为“阳马”,四个面均为直角三角形的四面体称为“鳖臑”,如图在堑堵中,且下列说法正确的是( )A四棱锥为“阳马”B四面体为“鳖臑”C四棱锥体积的最大值为D过点分别作于点,于点,则11(2021浙江高考真题)如图已知正方体,M,N分别是
4、,的中点,则( )A直线与直线垂直,直线平面B直线与直线平行,直线平面C直线与直线相交,直线平面D直线与直线异面,直线平面12(2021全国高考真题(理)在正方体中,P为的中点,则直线与所成的角为( )ABCD13(2019全国高考真题(理)如图,点为正方形的中心,为正三角形,平面平面是线段的中点,则A,且直线是相交直线B,且直线是相交直线C,且直线是异面直线D,且直线是异面直线14(2020全国高考真题(理)设有下列四个命题:p1:两两相交且不过同一点的三条直线必在同一平面内.p2:过空间中任意三点有且仅有一个平面.p3:若空间两条直线不相交,则这两条直线平行.p4:若直线l平面,直线m平面
5、,则ml.则下述命题中所有真命题的序号是_.15(2019北京高考真题(理)已知l,m是平面外的两条不同直线给出下列三个论断:lm;m;l以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:_线面平行与垂直1(2021全国高三其他模拟),是三条不同的直线,是两个不同的平面,则下列判断正确的是( )A若,则B若,则C若,两两相交,且交于同一点,则,共面D若,则【答案】D【分析】根据空间线面之间的关系,逐项进行判断分析即可得解.【详解】对于选项A,若成立还需要添加条件,故A不正确;对于选项B,由,还可能得到,是异面直线,故B不正确;对于选项C,可举反例,如三棱锥同一顶点出发的三条
6、棱,故C不正确;对于选项D,又,故D正确故选:D.2(2020全国高三一模(理)已知a,b是两条不同的直线,是两个不同的平面,且a,b,a,b,则“ab“是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件【答案】D【分析】根据面面平行的判定及性质求解即可【详解】解:a,b,a,b,由ab,不一定有,与可能相交;反之,由,可得ab或a与b异面,a,b是两条不同的直线,是两个不同的平面,且a,b,a,b,则“ab“是“”的既不充分也不必要条件故选:D.【点睛】本题主要考查充分条件与必要条件的判断,考查面面平行的判定与性质,属于基础题3(2018全国(理)设为空间两条不同
7、的直线,为空间两个不同的平面,给出下列命题:若,则;若,则;若,则;若,则.其中正确命题的个数是A1B2C3D4【答案】D【详解】一根直线同时垂直两个不相同的平面,显然这两个平面平行,故正确;因为两条平行直线中有一条垂直于一个平面,则另外一条直线也垂直这个平面,故正确;若,则必存在直线,所以由面面垂直的判定可知,故正确;若,则由线面垂直的判定可知,故正确4(2012全国高三一模(理)若是空间三条不同的直线, 是空间两个不同的平面,则下列命题中,命题不正确的是A当时,若 ,则B当时,若 ,则C当且是在内的射影时,若,则D当且 时,若,则 【答案】D【详解】试题分析:若,则由平面与平面平行的判定定
8、理,得,所以是正确的;若,则有平面与平面垂直的判定定理得,所以是正确的;若当且是在内的射影, 若,则由三垂线定理得,所以是正确的;若不共面,则不成立,所以D是错误的,故选D.考点:线面位置关系的判定.5(2021扬州大学附属中学东部分校高一期中)已知直线,和平面,下列命题中正确的是( )A若,则B若,C若,则D若,则或【答案】D【分析】根据空间中直线和平面的位置关系依次判断选项即可.【详解】对选项A,若,则与的位置关系为:平行或异面,故A错误.对选项B,若,则与的位置关系为:平行,相交或异面,故B错误.对选项C,若,因为不知道是否在平面内,所以不能得到,故C错误.对选项D,若,当时,当时,也满
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 线面平行与垂直 2022 年高 数学 理科 一轮 复习 平行 垂直 基础练 能力 真题练 答案 解析
链接地址:https://www.77wenku.com/p-205898.html