5.3诱导公式 教学设计1
《5.3诱导公式 教学设计1》由会员分享,可在线阅读,更多相关《5.3诱导公式 教学设计1(11页珍藏版)》请在七七文库上搜索。
1、5.35.3 诱导公式诱导公式 本节课选自普通高中课程标准数学教科书-必修第一册一(人教 A 版)第五章三角函数,本节课是第 5 课时。本节主要是推导诱导公式二、三、四、五、六,并利用它们解决一些求值、化简、证明三角恒等式。 本小节介绍的五组诱导公式在内容上既是公式一的延续,又是后继学习内容的基础,它们与公式一组成的六组诱导公式,用于解决求任意角的三角函数值的问题以及有关三角函数的化简、证明等问题。 在诱导公式的学习中,化归思想贯穿始末,这一典型的数学思想,无论在本节中的分析导入,还是利用诱导公式将求任意角的三角函数值转化为求锐角的三角函数值,均清晰地得到体现,在教学中注意数学思想渗透于知识的
2、传授之中,让学生了解化归思想,形成初步的化归意识特别是在本课时的三个转化问题引入后,为什么确定 180+a 角为第一研究对象,a 角为第二研究对象,正是化归思想的运用。 课本例题实际上是诱导公式的综合运用,难点在于需要把所求的角看成是一个整体的任意角,学生第一次接触到此题型,思维上有困难,要多加引导分析,另外,诱导公式中角度制亦可转化为弧度制,但必须注意同一个公式中只能采取一种制度,因此要加强角度制与弧度制的转化的练习。 课程目标课程目标 学科素养学科素养 A.借助单位圆,推导出正弦、余弦和正切的诱导公式;B.能正确运用诱导公式将任意角的三角函数化为锐角的三角函数,并解决有关三角函数求值、化简
3、和恒等式证明问题; C.了解未知到已知、复杂到简单的转化过程,培养学生的化归思想。 1.数学抽象:利用单位圆找不同角的关系; 2.逻辑推理:诱导公式的推导; 3.数学运算:有关三角函数求值、化简和恒等式证明问题。 1.教学重点:诱导公式的记忆、理解、运用; 2.教学难点:诱导公式的推导、记忆及符号的判断。 多媒体 教学过程 教学设计意图 核心素养目标 一、复习回顾,温故知新 1. 任意角三角函数的定义 【答案】设角,是一个任意角,R它的终边与单位圆交于点),(Pyx。 那么(1);sin,sinyy即的正弦函数。记作叫做 (2);cos,cosxx即的余弦函数。记作叫做 ;tan,tanxyx
4、y即的正切。记作叫做 2.诱导公式一 tan)2tan(cos)2cos(sin)2sin(kkk,其中,zk。 终边相同的角的同一三角函数值相等 通过复习上节所学任意角三角函数的定义与诱导公式一,引入本节新课。建立知识间的联系,提高学生概括、类比推理的能力。 二、探索新知 思考 1: (1).终边相同的角的同一三角函数值有什么关系? 【答案】相等 (2).角 -与的终边 有何位置关系? 【答案】终边关于 x 轴对称 (3).角与的终边 有何位置关系? 【答案】终边关于 y 轴对称 (4).角与的终边 有何位置关系? 【答案】终边关于原点对称 思考 2: 已知任意角的终边与单位圆相交于点 P(
5、x, y),请同学们思考回答点 P关于原点、x 轴、y 轴对称的三个点的坐标是什么? 【答案】点 P(x, y)关于原点对称点 P1(-x, -y) 点 P(x, y)关于 x 轴对称点 P2(x, -y) 点 P(x, y)关于 y 轴对称点 P3(-x, y) 探究一 如图, 角的三角函数值与的三角函数值之间有什么关系? 角 + 与角 的终边关于原点 O 对称, xyxytan,cos,sin, 通过思考让学生了解角终边之间的关系,为推导诱导公式作铺垫,提高学生的解决问题、分析问题的能力。 通过探究,由图形观察角的三角函数值与的三角函数值之间有什么关系,进而得到诱导公式二,提高学生分析问题
6、、概括能力。 xyxyxy)tan(,)cos(,)sin( (公式二) sin( + ) = sin , cos( + ) = cos , tan( + ) = tan 。 探究二 角与的三角函数值之间有什么关系 角 与 角 的 终 边 关 于x轴 对 称 , 有xyxytan,cos,sin。xyxyxy)tan(,)cos(,)sin(。 (公式三) sin() = sin , cos() = cos , tan() = tan 。 探究三 根据上两组公式的推导,你能否推导出角与角的三角函数值之间的关系? 通过探究,由图形观察角的三角函数值与的三角函数值之间有什么关系,进而得到诱导公式三
7、,提高学生分析问题、概括能力。 通过探究,由图形观察角的三角函数值与的三角函数值之间有什么关系,进而得到诱导公式三,提高学生分析问题、概括能力。 角与角的终边关于y轴对称,故有xyxytan,cos,sin xyxyxy)tan(,)cos(,)sin( 所以,(公式二) sin( - ) = sin , cos( - ) = cos , tan( - ) = -tan 。 思考 3:这四个诱导公式有什么规律? ,)(2Zkk的三角函数值, 等于的同名函数值, 前面加上一个把看成锐角时原函数值的符号 总结为一句话:函数名不变,符号看象限。 例 1.求下列三角函数值 (1)cos225 ;(2)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 5.3诱导公式 教学设计1 5.3 诱导 公式 教学 设计
链接地址:https://www.77wenku.com/p-206080.html