4.4.3不同增长函数的差异 教学设计1
《4.4.3不同增长函数的差异 教学设计1》由会员分享,可在线阅读,更多相关《4.4.3不同增长函数的差异 教学设计1(8页珍藏版)》请在七七文库上搜索。
1、 第四章第四章 指数函数与对数函数指数函数与对数函数 4.4.3 不同增长函数的差异不同增长函数的差异 本节课是新版教材人教 A 版普通高中课程标准实验教科书数学必修 1 第四章第 4.4.3 节 不同增长函数的差异 是在学习了指数函数、对数函数和幂函数之后的对函数学习的一次梳理和总结。本节提出函数增长快慢的问题,通过函数图像及三个函数的性质,完成函数增长快慢的认识。既是对三种函数学习的总结,也为后续导数的学习做了铺垫。培养和发展学生数学直观、数学抽象、逻辑推理和数学建模的核心素养。 课程目标 学科素养 1.了解指数函数、对数函数、幂函数 (一次函数) 的增长差异. 2、经过探究对函数的图像观
2、察,理解对数增长、直线上升、指数爆炸。培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力; 3、在认识函数增长差异的过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学应用的意识,探索数学。 a.数学抽象:函数增长快慢的认识; b.逻辑推理:由特殊到一般的推理; c.数学运算:运用指数和对数运算分析问题; d.直观想象:指数、对数函数的图像; e.数学建模:运用函数增长差异解决实际问题; 教学重点:函数增长快慢比较的常用方法; 教学难点:了解影响函数增长快慢的因素; 多媒体 教学过程 设计意图 核心教学素养目标 (一) 、温故知新 三种函数模型的性质 yax(a1) yl
3、ogax(a1) yxn(n0) 在(0,)上的增减性 增函数 增函数 增函数 图象的变化趋势 随x增大逐渐近似与 y 轴;平行 随 x 增大逐渐近似与 x轴 x 平行 随 n 值而不同 增长速度 yax(a1):随着 x 的增大,y 增长速度越来越快,会远远大于 yxn(n0)的增长速度,ylogax(a1)的增长速度越来越慢 存在一个 x0,当 xx0时,有 axxnlogax (二)问题探究 我们看到,一次函数与指数函数的增长方式存在很大差异事实上,这种差异正是不同类型现实问题具有不同增长规律的反映因此,如果把握了不同函数增长方式的差异,那么就可以根据现实问题的增长情况,选择合适的函数模
4、型刻画其变化规律下面就来研究一次函数、指数函数和对数函数增长方式的差异 提出问题提出问题 虽然它们都是增函数,但增长方式存在很大差异,这种差异正是不同类型现实问题具有不同增长规律的反映. 我们仍然采用由特殊到一般,由具体到抽象的研究方法. 下面就来研究一次函数 f(x)=kx+b,k0 ,指数函数 g(x)=ax(a1) ,对数函数在定义域内增长方式的差异. 问题探究问题探究 以函数 y=2x与 y=2x 为例研究指数函数、一次函数增长方式的差异. 分析:(1) 在区间(-,0)上,指数函数 y=2x值恒大于 0,一次函数 y=2x 值恒小于 0,所以我们重点研究在区间(0,+)上它们的增长差
5、异. (2) 借助信息技术,在同一直角坐标系内列表、描点作图如下: 温故知新, 通过对上节指数、对数和幂函数问题的回顾,提出新的问题,提出研究函数增长差异的问题及研究方法。培养和发展逻辑推理和数学抽象的核心素养。 通过画出特殊的 x y=2x y=2x 0 1 0 0.5 1.414 1 1 2 2 1.5 2.828 3 2 4 4 2.5 5.657 5 3 8 6 (3) 观察两个函数图象及其增长方式: 结论 1:函数 y=2x与 y=2x 有两个交点(1,2)和(2,4) 结论 2:在区间(0,1)上,函数 y=2x的图象位于 y=2x 之上 结论 3:在区间(1,2)上,函数 y=2
6、x的图象位于 y=2x 之下 结论 4:在区间(2,3)上,函数 y=2x的图象位于 y=2x 之上 综上:虽然函数 y=2x与 y=2x 都是增函数,但是它们的增长速度不同,函数 y=2x 的增长速度不变,但是 y=2x的增长速度改变,先慢后快. 请大家想象一下,取更大的 x 值,在更大的范围内两个函数图象的关系? 思考:随着自变量取值越来越大,函数 y=2x的图象几乎与 x 轴垂直,函数值快速增长,函数 y=2x 的增长速度保持不变,和 y=2x的增长相比几乎微不足道. 指数函数和幂函数的图形,观察归纳出两类函数增长的差异和特点,发展学生逻辑推理,数学抽象、数学运算等核心素养; xy(2,
7、4)(1,2)1212345678OxyO 归纳总结归纳总结 总结一:函数 y=2x 与 y=2x在0,+)上增长快慢的不同如下: 虽然函数 y=2x 与 y=2x在0,+)上都是单调递增,但它们的增长速度不同. 随着 x 的增大,y=2x的增长速度越来越快,会超过并远远大于 y=2x 的增长速度. 尽管在 x 的一定范围内,2xx0时,恒有 2x2x. 总结二:一般地指数函数 y=ax(a1)与一次函数 y=kx(k0)的增长都与上述类似. 即使 k 值远远大于 a 值,指数函数 y=ax(a1)虽然有一段区间会小于y=kx(k0),但总会存在一个 x0,当 xx0时, y=ax(a1)的增
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 4.4
链接地址:https://www.77wenku.com/p-206125.html