高考数学压轴题《放缩法技巧》全总结
《高考数学压轴题《放缩法技巧》全总结》由会员分享,可在线阅读,更多相关《高考数学压轴题《放缩法技巧》全总结(25页珍藏版)》请在七七文库上搜索。
1、放缩技巧(高考数学备考资料)证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求的值; (2)求证:.解析:(1)因为,所以 (2)因为,所以奇巧积累 :(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (11) (12) (13) (14) (15) (15) 例2.
2、(1)求证:(2)求证: (3)求证:(4) 求证:解析:(1)因为,所以 (2) (3)先运用分式放缩法证明出,再结合进行裂项,最后就可以得到答案 (4)首先,所以容易经过裂项得到再证而由均值不等式知道这是显然成立的,所以例3.求证:解析: 一方面: 因为,所以 另一方面: 当时,当时,当时,所以综上有例4.(2008年全国一卷)设函数.数列满足.设,整数.证明:.解析: 由数学归纳法可以证明是递增数列, 故 若存在正整数, 使, 则,若,则由知,因为,于是例5.已知,求证: . 解析:首先可以证明: 所以要证 只要证: 故只要证,即等价于,即等价于 而正是成立的,所以原命题成立.例6.已知
3、,求证:.解析:所以 从而例7.已知,求证:证明: ,因为 ,所以 所以二、函数放缩 例8.求证:. 解析:先构造函数有,从而cause所以 例9.求证:(1) 解析:构造函数,得到,再进行裂项,求和后可以得到答案 函数构造形式: ,例10.求证:解析:提示:函数构造形式: 当然本题的证明还可以运用积分放缩如图,取函数,首先:,从而,取有,所以有,相加后可以得到: 另一方面,从而有取有,所以有,所以综上有例11.求证:和.解析:构造函数后即可证明例12.求证: 解析:,叠加之后就可以得到答案 函数构造形式:(加强命题)例13.证明: 解析:构造函数,求导,可以得到: ,令有,令有, 所以,所以
4、,令有, 所以,所以例14. 已知证明. 解析: ,然后两边取自然对数,可以得到然后运用和裂项可以得到答案)放缩思路:。于是, 即注:题目所给条件()为一有用结论,可以起到提醒思路与探索放缩方向的作用;当然,本题还可用结论来放缩: ,即例16.(2008年福州市质检)已知函数若 解析:设函数 函数)上单调递增,在上单调递减.的最小值为,即总有而即令则 例15.(2008年厦门市质检) 已知函数是在上处处可导的函数,若在上恒成立. (I)求证:函数上是增函数; (II)当; (III)已知不等式时恒成立,求证:解析:(I),所以函数上是增函数 (II)因为上是增函数,所以 两式相加后可以得到 (
5、3) 相加后可以得到: 所以令,有 所以(方法二) 所以 又,所以三、分式放缩 姐妹不等式:和 记忆口诀”小者小,大者大” 解释:看b,若b小,则不等号是小于号,反之.例19. 姐妹不等式:和也可以表示成为和解析: 利用假分数的一个性质可得 即例20.证明:解析: 运用两次次分式放缩: (加1) (加2) 相乘,可以得到: 所以有四、分类放缩 例21.求证: 解析: 例22.(2004年全国高中数学联赛加试改编) 在平面直角坐标系中, 轴正半轴上的点列与曲线(0)上的点列满足,直线在x轴上的截距为.点的横坐标为,.(1)证明4,; (2)证明有,使得对都有. 解析:(1) 依题设有:,由得:
6、,又直线在轴上的截距为满足 显然,对于,有 (2)证明:设,则 设,则当时,。所以,取,对都有:故有成立。例23.(2007年泉州市高三质检) 已知函数,若的定义域为1,0,值域也为1,0.若数列满足,记数列的前项和为,问是否存在正常数A,使得对于任意正整数都有?并证明你的结论。 解析:首先求出,故当时,因此,对任何常数A,设是不小于A的最小正整数,则当时,必有.故不存在常数A使对所有的正整数恒成立.例24.(2008年中学教学参考)设不等式组表示的平面区域为,设内整数坐标点的个数为.设, 当时,求证:. 解析:容易得到,所以,要证只要证,因为,所以原命题得证五、迭代放缩例25. 已知,求证:
7、当时, 解析:通过迭代的方法得到,然后相加就可以得到结论例26. 设,求证:对任意的正整数k,若kn恒有:|Sn+kSn|0,b0,求证:解析: 因为a+b=1,a0,b0,可认为成等差数列,设,从而例47.设,求证.解析: 观察的结构,注意到,展开得,即,得证.例48.求证:. 解析:参见上面的方法,希望读者自己尝试!)例42.(2008年北京海淀5月练习) 已知函数,满足:对任意,都有;对任意都有.(I)试证明:为上的单调增函数;(II)求;(III)令,试证明:. 解析:本题的亮点很多,是一道考查能力的好题. (1)运用抽象函数的性质判断单调性: 因为,所以可以得到, 也就是,不妨设,所
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 放缩法技巧 高考 数学 压轴 放缩法 技巧 总结
链接地址:https://www.77wenku.com/p-206146.html