第13讲立体几何选择填空压轴题 专题提升训练(解析版)-2022届高考数学理培优
《第13讲立体几何选择填空压轴题 专题提升训练(解析版)-2022届高考数学理培优》由会员分享,可在线阅读,更多相关《第13讲立体几何选择填空压轴题 专题提升训练(解析版)-2022届高考数学理培优(16页珍藏版)》请在七七文库上搜索。
1、 第13讲 立体几何选择填空压轴题专练A组一、选择题1(2018全国卷)已知正方体的棱长为1,每条棱所在直线与平面所成的角相等,则截此正方体所得截面面积的最大值为A B C D【答案】A【解析】记该正方体为,正方体的每条棱所在直线与平面所成的角都相等,即共点的三条棱,与平面所成的角都相等,如图,连接,因为三棱锥是正三棱锥,所以,与平面所成的角都相等,分别取,的中点,连接,易得,六点共面,平面与平面平行,且截正方体所得截面的面积最大,又,所以该正六边形的面积为,所以截此正方体所得截面面积的最大值为,故选A2如图,矩形中, , 为边的中点,将沿直线翻转成(平面)若、分别为线段、的中点,则在翻转过程
2、中,下列说法错误的是( )A. 与平面垂直的直线必与直线垂直B. 异面直线与所成角是定值C. 一定存在某个位置,使D. 三棱锥外接球半径与棱的长之比为定值【答案】C【解析】取CD的中点F,连BF,MF,如下图:可知面MBF/ ,所以A对。取中点G,可知,如下图,可知B对。点A关于直线DE的对为F,则面,即过O与DE垂直的直线在平面上。故C错。三棱锥外接球的球心即为O点,所以外接球半径为。故D对。选C3如图,矩形ABCD中,AB=2AD,E为边AB的中点,将ADE沿直线DE翻折成A1DE若M为线段A1C的中点,则在ADE翻折过程中,下面四个命题中不正确的是ABM是定值 B点M在某个球面上运动C存
3、在某个位置,使DEA1 C D存在某个位置,使MB/平面A1DE【答案】C【解析】取CD中点F,连接MF,BF,则MF/A1D且MF=A1D,FB/ED 且FB=ED所以,由余弦定理可得MB2=MF2+FB2-2MFFBcosMFB是定值,所以 M是在以B为圆心,MB为半径的球上,可得正确由MF/A1D与 FB/ED可得平面MBF平面A1DE,可得正确;A1C在平面ABCD中的射影为AC,AC与DE不垂直,可得不正确故答案为:4如图,正四面体的顶点、分别在两两垂直的三条射线, , 上,则在下列命题中,错误的是( )A. 是正三棱锥 B. 直线与平面相交C. 直线与平面所成的角的正弦值为 D.
4、异面直线和所成角是【答案】C【解析】如图ABCD为正四面体,ABC为等边三角形,又OA、OB、OC两两垂直,OA面OBC,OABC,过O作底面ABC的垂线,垂足为N,连接AN交BC于M,由三垂线定理可知BCAM,M为BC中点,同理可证,连接CN交AB于P,则P为AB中点,N为底面ABC中心,OABC是正三棱锥,故A正确将正四面体ABCD放入正方体中,如图所示,显然OB与平面ACD不平行则B正确,由上图知:直线与平面所成的角的正弦值为,则C错误异面直线和所成角是,故D正确.二、填空题5如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O。D、E、F为圆O上的点,DBC,
5、ECA,FAB分别是以BC,CA,AB为底边的等腰三角形。沿虚线剪开后,分别以BC,CA,AB为折痕折起DBC,ECA,FAB,使得D、E、F重合,得到三棱锥。当ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_。【答案】【解析】如下图,设正三角形的边长为x,则., 三棱锥的体积 .令,则,令, ,.6已知求的直径是该球球面上的点, ,则棱锥 的体积为_【答案】【解析】设球心为,因为,所以, .7在三棱锥中, 是边长为3的等边三角形, ,二面角的大小为120,则此三棱锥的外接球的表面积为_【答案】【解析】由题可得:球心O在过底面的中心G的垂直底面的直线上,又二面角的大小为120,取
6、AB的中点为M,SB的中点为N,故,又,过M做MH=GO,且MH垂直底面,所以, ,故球的半径为,所以球的表面积为8已知两平行平面间的距离为,点,点,且,若异面直线与所成角为60,则四面体的体积为_【答案】6【解析】设平面ABC与平面交线为CE,取 ,则 9在空间直角坐标系中,四面体在坐标平面上的一组正投影图形如图所示(坐标轴用细虚线表示)该四面体的体积是_【答案】【解析】由图可知,该三棱锥的底面是底为4,高为1的三角形,高为2,故其体积为,故答案为.10如图,在棱长为2的正四面体中, 分别为直线上的动点,且.若记中点的轨迹为,则等于_.(注: 表示的测度,在本题, 为曲线、平面图形、空间几何
7、体时, 分别对应长度、面积、体积.)【答案】【解析】为了便于计算,将正四面体放置于如图的正方体中,可知,正方体的棱长为,建立如图所示的空间直角坐标系,设, ,即 ,又,即 ,代入上式得 ,即,即的轨迹为半径为的圆,周长为 .B组一、选择题1正方体ABCD-A1B1C1D1的棱长为6,点O在BC上,且BO=OC,过点O的直线l与直线AA1,C1D1分别交于M,N两点,则MN与面ADD1A1所成角的正弦值为( )A. B. C. D. 【答案】A【解析】将平面 延展与 交于 连结 ,并延长与 延长线交于 ,平面交 于 , 可知 等于 与 成角,,由正方体的性质可知 , ,故选 . 2四棱锥的三视图
8、如图所示,则该四棱锥的外接球的表面积为( )A. B. C. D. 【答案】C【解析】根据三视图还原几何体为一个四棱锥,平面 平面,由于为等腰三角形,四边形为矩形, ,过的外心 作平面 的垂线,过矩形的中心作平面的垂线两条垂线交于一点为四棱锥外接球的球心,在三角形 中, ,则 , , , , , , .选C. 3如图是正方体的平面展开图。关于这个正方体,有以下判断:与所成的角为平面 平面平面 其中正确判断的序号是( )A. B. C. D. 【答案】C【解析】把正方体的平面展开图还原成正方体 ,得:与所成的角为正确; 不包含于平面 平面 平面 ,故正确; 与 是异面直线,故不正确; 平面 ,所
9、以平面 平面 ,故 正确 ,正确判断的序号是 ,故选C.4若三棱锥的底面是以为斜边的等腰直角三角形, ,则该三棱锥的外接球的表面积为( )A. B. C. D. 【答案】A【解析】如图,底面是等腰直角三角形, 是中点,所以外接球圆心在上,设外接球半径为,所以有,解得,所以该三棱锥的外接球表面积为.故本题正确答案为A.5三棱锥中,侧棱底面, , , , ,则该三棱锥的外接球的表面积为( )A. B. C. D. 【答案】B【解析】由题,侧棱底面, , , ,则根据余弦定理可得 , 的外接圆圆心 三棱锥的外接球的球心到面的距离 则外接球的半径 ,则该三棱锥的外接球的表面积为 6正方体中,点在上运动
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第13讲立体几何选择填空压轴题 专题提升训练解析版-2022届高考数学理培优 13 立体几何 选择 填空 压轴 专题 提升 训练 解析 2022 高考 学理
链接地址:https://www.77wenku.com/p-207791.html