2022年高三数学小题压轴题专练14:数列(1)含答案解析
《2022年高三数学小题压轴题专练14:数列(1)含答案解析》由会员分享,可在线阅读,更多相关《2022年高三数学小题压轴题专练14:数列(1)含答案解析(13页珍藏版)》请在七七文库上搜索。
1、小题压轴题专练14数列(1)1、 单选题1已知等差数列an的前n项和为Sn,满足sin(a41)+2a450,sin(a81)+2a8+10,则下列结论正确的是()AS1111,a4a8BS1111,a4a8CS1122,a4a8DS1122,a4a8解:sin(a41)+2a450,sin(a81)+2a8+10,sin(a41)+2(a41)30,sin(1a8)+2(1a8)30,令f(x)sinx+2x3,可得f(x)cosx+20,因此函数f(x)在R上单调递增又f(1)sin110,f(2)sin2+10,因此函数f(x)在(1,2)内存在唯一零点a411a8,1a412,11a8
2、2,a4+a82,2a43,1a80,S1111,a4a8,故选:B2非负实数列前项和为若分别记与前项和为与,则的最大值与最小值的差为,则A2BC3D解:由题设和柯西不等式可得:,当且仅当且时取“ “,的最小值为1,又,当且仅当且时取“ “,的最大值为,故选:3已知数列满足,则一定成立的是ABCD解:,将上面的式子相加得到:,即,令,当时,故当时,即,又,即,故选:4已知数列的前项和为,且,记数列的前项和为若对于任意的,不等式恒成立,则实数的最小值为ABCD解:由,可得,所以,所以,当时,所以,满足上式,所以,所以,两式相减得,所以,所以,所以,令,故当时,单调递增,当时,单调递减,所以,所以
3、,的最小值为故选:5已知数列满足对任意的,总存在,使得,则可能等于ABCD解:数列满足对任意的,总存在,利用特值法检验,对于选项:当时,则,令时,不存在;对于选项:当时,则,取,即可;对于选项:当时,则,令时,不存在;对于选项时,当时,不存在,使得,所以不存在,故选:6已知数列,满足,设数列的前项和为,则以下结论正确的是ABCD解:,把代入递推可得:,令,则,在单调递增,即当时,恒有成立,故选项错误;又,选项错误;,令,则,函数在,上递减,故选项正确;又由可得,(当且仅当时取“ “,可得,故选项错误,故选:7正整数称为理想的,若存在正整数使得,构成等差数列,其中为组合数,则不超过2020的理想
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年高 数学 压轴 题专练 14 数列 答案 解析
文档标签
- 2022年高三数学小题压轴题专练12抛物线1含答案解析
- 2022年高三数学小题压轴题专练14数列1含答案解析
- 2022年高三数学小题压轴题专练10双曲线1含答案解析
- 2022年高三数学小题压轴题专练9椭圆2含答案解析
- 2022年高三数学小题压轴题专练3导数1含答案解析
- 2022年高三数学小题压轴题专练5三角1含答案解析
- 2022年高三数学小题压轴题专练1函数的零点1含答案解析
- 2022年高三数学小题压轴题专练15数列2含答案解析
- 2022年高三数学小题压轴题专练11双曲线2含答案解析
- 2022年高三数学小题压轴题专练8椭圆1含答案解析
- 2022年高三数学小题压轴题专练6三角2含答案解析
- 2022年高三数学小题压轴题专练4导数2含答案解析
- 初三压轴题
链接地址:https://www.77wenku.com/p-208219.html