浙江省绍兴市新昌县2021-2022学年八年级上期末数学试题(含答案解析)
《浙江省绍兴市新昌县2021-2022学年八年级上期末数学试题(含答案解析)》由会员分享,可在线阅读,更多相关《浙江省绍兴市新昌县2021-2022学年八年级上期末数学试题(含答案解析)(24页珍藏版)》请在七七文库上搜索。
1、浙江省绍兴市新昌县浙江省绍兴市新昌县 2021-2022 学年八年级上期末数学试题学年八年级上期末数学试题 一、选择题(本大题有一、选择题(本大题有 10 小题,请选出每小题中一个符合题意的正确选项,不选、多选、错小题,请选出每小题中一个符合题意的正确选项,不选、多选、错选均不给分)选均不给分) 1. 在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( ) A. B. C. D. 2. 已知三角形的两边长分别为 2 和 7,则该三角形的第三边长可以为( ) A. 3 B. 5 C. 7 D. 9 3. 如图,ABC 中,ABAC,D是 BC的中点,50BAC,则BAD的度数为( )
2、 A. 25 B. 50 C. 65 D. 100 4. 下列说法正确的是( ) A. 周长相等的两个三角形全等 B. 面积相等的两个三角形全等 C. 三个角对应相等的两个三角形全等 D. 三条边对应相等的两个三角形全等 5. 如果ab,那么下列结论一定正确的是( ) A. 33ab B. 22ab C. 34ab D. 33ab 6. 下列选项中,可以用来说明命题“两个锐角的和是锐角”是假命题的反例是( ) A. 两个角分别为 13 ,45 B. 两个角分别为 40 ,45 C. 两个角分别为 45 ,45 D. 两个角分别为 105 ,45 7. 在平面直角坐标系中,点 A 的坐标为1,3
3、,点 B 的坐标为(4,3),则线段 AB上任意一点的坐标可表示为( ) A. ,314xx B. ,34xx C. ,31xx D. ,3x 8. 如图,ABCD, BP 和 CP 分别平分ABC和BCD, AD过点 P, 且与 AB 垂直 若8AD,10BC ,则VBCP 的面积为( ) A. 16 B. 20 C. 40 D. 80 9. 一次函数 ykxb,y随 x的增大而减小,且 kb0,则在直角坐标系内它的大致图象是( ) A. B. C. D. 10. 如图, M, A, N是直线 l上的三点,3AM ,5AN , P 是直线 l外一点, 且60PAN,1AP ,若动点 Q 从点
4、 M出发,向点 N 移动,移动到点 N停止,在 APQ 形状的变化过程中,依次出现的特殊三角形是( ) A. 直角三角形等边三角形直角三角形等腰三角形 B. 直角三角形等腰三角形直角三角形等边三角形 C. 等腰三角形直角三角形等腰三角形直角三角形 D. 等腰三角形直角三角形等边三角形直角三角形 二、填空题(本大题有二、填空题(本大题有 6 小题)小题) 11. 用不等式表示“x的 4倍小于 3”为_ 12. 若点 M(a2,2a3)是 y轴上的点,则 a 的值是_ 13. 请写出命题“直角三角形的两个锐角互余”的逆命题:_ 14. 如图,VABC中,90ACB,CD是 AB边上的中线,且12C
5、DAB,则 AB的长为_ 15. 某种家用电器的进价为每件 800 元,以每件 1200 元的标价出售,由于电器积压,商店准备打折销售,但要保证利润率不低于 5%,则最低可按标价的_折出售 16. 如图,一块木板把VABC遮去了一部分,过点 A的木板边沿恰好把VABC分成两个等腰三角形,已知10B ,且B是其中一个等腰三角形的底角,则VABC中最大内角的度数为_ 三、解答题(本大题有三、解答题(本大题有 8 小题,解答需写出必要的文字说明、演算步骤或证明过程)小题,解答需写出必要的文字说明、演算步骤或证明过程) 17. 以下是圆圆解不等式组2( 1) 3(1 + ) 5的解答过程 解:由,得2
6、13x , 所以,2x 由,得15x, 所以,4x 所以原不等式组的解为4x 圆圆解答过程是否正确?若不正确,写出正确的解答过程 18. 如图,已知VABC (1)请用直尺和圆规作ABC的角平分线 BD,交 AC于点 D (保留作图痕迹,不写作法) (2)在(1)的条件下,若100A ,28C,求BDA 的度数 19. 已知:如图,点 A,F,E,B同一直线上,90ACEBDF,ACDF,AFBE求证:ABFD 20. 如图,在平面直角坐标系 xOy中,A B C V是由VABC平移得到,已知A,B,C三点的坐标分别为1,1,1, 3,41,,点 A的坐标为1,4 (1)画出VABC (2)描
7、述VABC到A B C V的平移过程 (3)已知点 P(0,b)为VABC内的一点,求点 P 在A B C V内的对应点P的坐标 21. 如图,已知一次函数ykxb图象经过2, 2A ,B(1,4)两点 (1)求一次函数解析式,并在直角坐标系中画出其图象 (2)当0y 时,求 x 的取值范围 22. 如图,在三角形纸片 ABC 中,6cmAC ,8cmBC ,10cmAB,折叠纸片使点 B 与点 A 重合,DE 为折痕,将纸片展开铺平,连结 AE (1)判断VABC的形状,并说明理由 (2)求 AE的长 23 某通讯公司就手机流量套餐推出两种方案,如表: A 方案 B 方案 每月基本费用(元)
8、 20 50 每月免费使用流量(兆) 1024 m 超出后每兆收费(元) 0.3 0.3 已知 A,B两种方案每月所需的费用 y(元)与每月使用的流量 x(兆)之间的函数关系如图所示 (1)请直接写出 m的值 (2)在 A方案中,当每月使用流量不少于 1024兆时,求每月所需的费用 y(元)与每月使用的流量 x(兆)之间的函数关系式 (3)小明的爸爸平均每月使用流量约 2024兆,你认为他选择哪种方案较划算?说明理由 24. 如图,90ABC,VABE 是等边三角形, 点 D是射线 BC上的任意一点 (不与点 B 重合) , 连结 AD,以 DA为边在 DA 边的右侧作等边三角形 ADF,连结
9、 FE 并延长交 BC于点 G探究下列问题: (1)EBC_ (2)当 A,E,D三点在同一直线上时,求EGD的度数 (3)当 A,E,D三点不在同一直线上且点 D,G不重合时,求EGD的度数 浙江省绍兴市新昌县浙江省绍兴市新昌县 2021-2022 学年八年级上期末数学试题学年八年级上期末数学试题 一、选择题(本大题有一、选择题(本大题有 10 小题,请选出每小题中一个符合题意的正确选项,不选、多选、错小题,请选出每小题中一个符合题意的正确选项,不选、多选、错选均不给分)选均不给分) 1. 在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( ) A. B. C. D. 【答案】D
10、 【解析】 【分析】根据轴对称图形的概念求解如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴 【详解】A、不是轴对称图形,故 A不符合题意; B、不是轴对称图形,故 B不符合题意; C、不是轴对称图形,故 C不符合题意; D、是轴对称图形,故 D符合题意 故选 D. 【点睛】本题主要考查轴对称图形的知识点确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合 2. 已知三角形的两边长分别为 2 和 7,则该三角形的第三边长可以为( ) A. 3 B. 5 C. 7 D. 9 【答案】C 【解析】 【分析】根据三角形的三边关系求出第三边的取值范围,再进
11、行判断即可 【详解】解:三角形的两边长分别为 2 和 7, 设第三边为 m, 三角形的第三边取值范围为:7 272m , 即59m, 三角形的第三边可以是 7; 故选:C 【点睛】本题考查了三角形的三边关系,解题的关键是正确求出第三边的取值范围 3. 如图,ABC 中,ABAC,D是 BC的中点,50BAC,则BAD的度数为( ) A. 25 B. 50 C. 65 D. 100 【答案】A 【解析】 【分析】在ABC中,AB=AC,点 D为 BC的中点,根据等边对等角与三线合一的性质,即可求得答案 【详解】解:AB=AC,点 D 为 BC的中点,BAC=50 , AD是BAC的角平分线, B
12、AD=CAD=1252BAC, 故选:A 【点睛】此题考查了等腰三角形的性质,掌握等腰三角形的性质是解题的关键 4. 下列说法正确的是( ) A. 周长相等的两个三角形全等 B. 面积相等的两个三角形全等 C. 三个角对应相等的两个三角形全等 D. 三条边对应相等的两个三角形全等 【答案】D 【解析】 【分析】根据全等三角形的判定方法,此题应采用排除法,对选项逐个进行分析从而确定正确答案 【详解】A、全等三角形的周长相等,但周长相等的两个三角形不一定全等,故本选项错误; B、全等三角形的面积相等,但面积相等的两个三角形不一定全等,故本选项错误; C、判定全等三角形的过程中,必须有边的参与,故本
13、选项错误; D、正确,符合判定方法 SSS, 故选 D 【点睛】本题考查全等三角形的判定方法,常用的方法有 SSS,SAS,AAS,ASA 等,应该对每一种方法彻底理解真正掌握并能灵活运用而满足 SSA,AAA是不能判定两三角形是全等的 5. 如果ab,那么下列结论一定正确的是( ) A. 33ab B. 22ab C. 34ab D. 33ab 【答案】D 【解析】 【分析】根据不等式的基本性质求解即可 【详解】解:A、如果ab,则33ab ,错误,不符合题意; B、如果ab,则22ab,错误,不符合题意; C、如果ab,则34ab ,不一定正确,不符合题意; D、如果ab,则33ab ,正
14、确,符合题意, 故选:D 【点睛】本题考查不等式的基本性质,熟练掌握不等式的基本性质是解答的关键 6. 下列选项中,可以用来说明命题“两个锐角的和是锐角”是假命题的反例是( ) A. 两个角分别为 13 ,45 B. 两个角分别为 40 ,45 C. 两个角分别为 45 ,45 D. 两个角分别为 105 ,45 【答案】C 【解析】 【分析】根据反例证明命题是假命题即举出一个例子使得命题的条件成立,结论不成立即可 【详解】解:命题“两个锐角的和是锐角”的条件是两个锐角,结论是两个锐角的和是锐角, 举反例说明此命题是假命题,只需要举例说明两个锐角的和不是锐角即可, 只有选项 C 符合题意, 故
15、选 C 【点睛】本题主要考查了举反例,解题的关键在于能够熟练掌握举反例的知识 7. 在平面直角坐标系中,点 A坐标为1,3,点 B 的坐标为(4,3),则线段 AB 上任意一点的坐标可表示为( ) A. ,314xx B. ,34xx C. ,31xx D. ,3x 【答案】A 【解析】 【分析】根据点的坐标可得ABx轴,结合图形及平行线即可得出线段 AB 上的点的表示方法 【详解】解:点1,3A ,点4,3B, 可得ABx轴, 得出线段 AB 上的点表示为,314xx , 故选:A 【点睛】题目主要考查坐标系中点的特点及平行于 x 轴的点的特点,理解坐标系中点的特点是解题关键 8. 如图,A
16、BCD, BP 和 CP 分别平分ABC和BCD, AD过点 P, 且与 AB 垂直 若8AD,10BC ,则VBCP 的面积为( ) A. 16 B. 20 C. 40 D. 80 【答案】B 【解析】 【分析】过点 P 作 PEBC 于 E,根据角平分线上的点到角的两边的距离相等可得 PA=PE,PD=PE,那么PE=PA=PD,又 AD=8,进而求出 PE=4,进而根据三角形面积公式求解即可 【详解】解:过点 P作 PEBC于 E, ABCD,PAAB, PDCD, BP和 CP分别平分ABC和BCD, PA=PE,PD=PE, PE=PA=PD, PA+PD=AD=8, PA=PD=4
17、, PE=4 1110 42022BCPSBCEPV 故选:B 【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质并作辅助线是解题的关键 9. 一次函数 ykxb,y随 x的增大而减小,且 kb0,则在直角坐标系内它的大致图象是( ) A. B. C. D. 【答案】C 【解析】 【分析】先根据函数为减函数判断出 k0,再根据 kb0 判断出 b0,再根据一次函数图象的特点解答即可 【详解】解:一次函数 ykxb,y随 x 的增大而减小, k0, 又kb0,b0, 函数的图象经过第二、三、四象限 故选:C 【点睛】主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题一次函
18、数的图象是一条直线,当 k0时,y随 x的增大而增大;当 k0时,y随 x 的增大而减小 一次函数 ykxb 的图象有四种情况: 当 k0,b0,函数 ykxb的图象经过第一、二、三象限; 当 k0,b0,函数 ykxb的图象经过第一、三、四象限; 当 k0,b0时,函数 ykxb的图象经过第一、二、四象限; 当 k0,b0时,函数 ykxb的图象经过第二、三、四象限 10. 如图, M, A, N是直线 l上的三点,3AM ,5AN , P 是直线 l外一点, 且60PAN,1AP ,若动点 Q 从点 M出发,向点 N 移动,移动到点 N停止,在 APQ 形状的变化过程中,依次出现的特殊三角
19、形是( ) A. 直角三角形等边三角形直角三角形等腰三角形 B. 直角三角形等腰三角形直角三角形等边三角形 C. 等腰三角形直角三角形等腰三角形直角三角形 D. 等腰三角形直角三角形等边三角形直角三角形 【答案】D 【解析】 【分析】根据题意,作出图形,根据等腰三角形的性质,含 30 度角的直角三角形的性质,等边三角形的性质,进行判断即可 【详解】如图, 1AP Q 11AQ 时,1APQV等腰三角形 60PANQ,1AP 当Q在A的右侧时,212AQ ,此时2APQV直角三角形 当31AQ 时,此时3APQV等边三角形 当42AQ 时,此时4APQV直角三角形 当动点 Q 从点 M出发,向点
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浙江省 绍兴市 新昌县 2021 2022 学年 年级 上期 数学试题 答案 解析
链接地址:https://www.77wenku.com/p-208384.html