2021届河南省洛阳市高考第二次考试数学试卷(理科)含答案解析
《2021届河南省洛阳市高考第二次考试数学试卷(理科)含答案解析》由会员分享,可在线阅读,更多相关《2021届河南省洛阳市高考第二次考试数学试卷(理科)含答案解析(19页珍藏版)》请在七七文库上搜索。
1、2021 年河南省洛阳市高考数学第二次考试试卷(理科)年河南省洛阳市高考数学第二次考试试卷(理科) 一、选择题(共一、选择题(共 12 小题)小题). 1已知集合 Mx|4x2,Nx|0,则 MN( ) Ax|4x3 Bx|4x2 Cx|2x2 Dx|2x3 2若复数 z 满足(3+4i)z|43i|,则 z 的虚部为( ) A B4 C D4 3已知平面 ,直线 m,n 满足 m,n,则“m”是“mn”的( ) A充分不必要条件 B必要不充分条件 C充分必要条件 D既不充分也不必要条件 4设 x,y 满足,则(x+1)2+y2的取值范围是( ) A0,10 B1,10 C1,17 D0,17
2、 5已知函数 f(x)是定义在 R 上的偶函数,当 x0 时,f(x)lnx+x,则 af(2),bf(log29),cf()的大小关系为( ) Aabc Bacb Cbca Dbac 6(xy)8的展开式中,x2y6项的系数是( ) A28 B28 C56 D56 7 已知双曲线 C:的焦点 F 到渐近线的距离与顶点 A 到渐近线的距离之比为 3:1,则双曲线 C 的渐近线方程为( ) A B C D 8已知函数 f(x)sinx+cosx(0)的最小正周期为 ,则该函数的图象( ) A关于点(,0)对称 B关于直线 x对称 C关于点(,0)对称 D关于直线 x对称 9已知点 A 是抛物线
3、C:x22py(p0)上一点,O 为坐标原点,若以点 M(0,8)为圆心,|OA|的长为半径的圆交抛物线 C 于 A,B 两点,且ABO 为等边三角形,则 p 的值是( ) A B2 C6 D 10易系辞上有“河出图,洛出书“之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中如图,白圈为阳数,黑点为阴数若从这 10 个数中任取 3 个数,则这 3 个数中至少有 2 个阳数且能构成等差数列的概率为( ) A B C D 11四棱锥 PABCD 的三视图如图所示,四棱锥 PABCD 的五个顶点都在一个球面上,E、F 分别是棱AB
4、、CD 的中点,直线 EF 被球面所截得的线段长为,则该球表面积为( ) A12 B24 C36 D48 12已知ABC 的三边分别为 a,b,c,若满足 a2+b2+2c28,则ABC 面积的最大值为( ) A B C D 二、填空题(每题二、填空题(每题 5 分,满分分,满分 20 分,将答案填在答题卡上)分,将答案填在答题卡上) 13函数 f(x)cos2x2cosx 的最大值为 14若非零向量 f(x)满足| | |,且,则 与 的夹角为 15若曲线 ylnx 在点(1,0)的切线与曲线 g(x)x2+mx+也相切,则 m 16在正方体 ABCDA1B1C1D1中,M、N、P、Q 分别
5、是 AB、AA1、C1D1、CC1的中点,给出以下四个结论:AC1MN; AC1平面 MNPQ; AC1与 PM 相交; NC1与 PM 异面其中正确结论的序号是 三、解答题(本大题共三、解答题(本大题共 5 小题,共小题,共 70 分解答应写出文字说明、证明过程或演算步骤)分解答应写出文字说明、证明过程或演算步骤) 17已知等差数列an的前 n 项和为 Sn,首项 a11,且 S1,S2,S4成等比数列 (1)求an的通项公式; (2)若数列an是单调数列,数列bn满足 log2bn,记数列anbn的前 n 项和为 Tn,求证:Tn3 18如图,在平面五边形 ABCDE 中,ABCE,且 A
6、E2,AEC60,CDED,cosEDC,将CDE 沿 CE 折起,使点 D 到 P 的位置,且 AP,得到如图 2 所示的四棱锥 PABCE (1)求证:AP平面 ABCE; (2)求平面 PAB 与平面 PCE 所成锐二面角的大小 19某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量 y(g)与尺寸 x(mm)之间近似满足关系式 ycxb(b, c 为大于 0 的常数) 按照某项指标测定, 当产品质量与尺寸的比在区间 (, )(0.302,0.388)内时为优等品现随机抽取 6 件合格产品,测得数据如下: 尺寸 x(mm) 38 48 58 68 78 88 质量 y(g) 16
7、.8 18.8 20.7 22.4 24 25.5 质量与尺寸的比 0.442 0.392 0.357 0.329 0.308 0.290 (1)现从抽取的 6 件合格产品中再任选 3 件,记 为取到优等品的件数,试求随机变量 的期望; (2)根据测得数据作了初步处理,得相关统计量的值如表: (lnxilnyi) (lnxi) (lnyi) (lnxi)2 75.3 24.6 18.3 101.4 ()根据所给统计量,求 y 关于 x 的回归方程; ()已知优等品的收益 z(单位:千元)与 x,y 的关系为 z2y0.32x,则当优等品的尺寸 x 为何值时,收益 z 的预报值最大? 附:对于样
8、本(vi,ui)(i1,2,n),其回归直线 ubv+a 的斜率和截距的最小二乘估计公式分别为: , ,e2.7182 20已知椭圆 C:1(ab0)的离心率为,点 E,F 分别为其下顶点和右焦点,坐标原点为 O,且EOF 的面积为 (1)求椭圆 C 的方程; (2)是否存在直线 l,使得 l 与椭圆 C 相交于 A,B 两点,且点 F 恰为EAB 的垂心?若存在,求直线l 的方程,若不存在,请说明理由 21已知函数 f(x)+ (1)若 x1 时,f(x),求实数 m 的取值范围; (2)求证:lnk+1n(k+1)(nN*) 选考题:共选考题:共 10 分请考生在第分请考生在第 22、23
9、 题中任选一题作答如果多做,则按所做的第题计分作答时,用题中任选一题作答如果多做,则按所做的第题计分作答时,用2B 铅笔在答题卡上把所选题目对应的题号后的方框涂黑铅笔在答题卡上把所选题目对应的题号后的方框涂黑选修选修 4-4:极坐标与参数方程:极坐标与参数方程 22 在直角坐标系 xOy 中, 曲线 C1的参数方程为( 为参数) 经过伸缩变换 :后,曲线 C1变为曲线 C2 (1)求曲线 C1和曲线 C2的普通方程; (2)已知点 P 是曲线 C2上的任意一点,曲线 C1与 x 轴和 y 轴正半轴的交点分别为 A,B,试求PAB面积的最大值和此时点 P 的坐标 选修选修 4-5:不等式选讲:不
10、等式选讲 23已知函数 f(x)|x+2|x+a| (1)当 a1 时,画出 yf(x)的图象; (2)若关于 x 的不等式 f(x)3a 有解,求 a 的取值范围 参考答案参考答案 一、选择题(共一、选择题(共 12 小题)小题). 1已知集合 Mx|4x2,Nx|0,则 MN( ) Ax|4x3 Bx|4x2 Cx|2x2 Dx|2x3 解:Mx|4x2,Nx|0 x|2x3, MNx|4x3, 故选:A 2若复数 z 满足(3+4i)z|43i|,则 z 的虚部为( ) A B4 C D4 解:由(3+4i)z|43i|,得 z, z 的虚部为 故选:C 3已知平面 ,直线 m,n 满足
11、 m,n,则“m”是“mn”的( ) A充分不必要条件 B必要不充分条件 C充分必要条件 D既不充分也不必要条件 解:因为 m,n,当 m 时,m 与 n 不一定平行,即充分性不成立; 当 mn 时,满足线面平行的判定定理,m 成立,即必要性成立; 所以“m”是“mn”的必要不充分条件 故选:B 4设 x,y 满足,则(x+1)2+y2的取值范围是( ) A0,10 B1,10 C1,17 D0,17 解:由约束条件作出可行域如图, 联立,解得 A(3,1), (x+1)2+y2的几何意义为可行域内动点与定点 P(1,0)距离的平方, 由图可知,可行域内动点与定点 P(1,0)距离的最小值且为
12、 1, 最大值为|PA|, (x+1)2+y2的取值范围是1,17 故选:C 5已知函数 f(x)是定义在 R 上的偶函数,当 x0 时,f(x)lnx+x,则 af(2),bf(log29),cf()的大小关系为( ) Aabc Bacb Cbca Dbac 解:根据题意,函数 f(x)是定义在 R 上的偶函数,则 af(2)f(2)f(), 当 x0 时,f(x)lnx+x,其导数为 f(x)+1,则 f(x)在(0,+)上为增函数, 又由 03log28log29,则 f()f(2)f(log29), 故有 bac, 故选:D 6(xy)8的展开式中,x2y6项的系数是( ) A28 B
13、28 C56 D56 解:(xy)8的展开式中,通项公式为 Tr+1(1)rx6ryr, 令 r6,可得 x2y6项的系数是256, 故选:C 7 已知双曲线 C:的焦点 F 到渐近线的距离与顶点 A 到渐近线的距离之比为 3:1,则双曲线 C 的渐近线方程为( ) A B C D 解:设顶点 A(a,0)焦点 F(c,0),其中一条渐近线的方程为:bx+ay0, 设 A 到渐近线的距离为 d, 焦点 F 到渐近线的距离为 db, 由题意可得 b:3:1 即3,所以 9a2c2a2+b2,可得 b28a2, 所以渐近线的方程为:yxx, 故选:A 8已知函数 f(x)sinx+cosx(0)的
14、最小正周期为 ,则该函数的图象( ) A关于点(,0)对称 B关于直线 x对称 C关于点(,0)对称 D关于直线 x对称 解:函数 f(x)sinx+cosxsin(x+)(0)的最小正周期为,2, f(x)sin(2x+) 令 x,求得 f(x)sin0,且 f(x)不是最值,故 A、D 错误; 令 x,求得 f(x),为最大值,故函数 f(x)的图象关于直线 x对称,故 B 正确,C 错误; 故选:B 9已知点 A 是抛物线 C:x22py(p0)上一点,O 为坐标原点,若以点 M(0,8)为圆心,|OA|的长为半径的圆交抛物线 C 于 A,B 两点,且ABO 为等边三角形,则 p 的值是
15、( ) A B2 C6 D 解:由题意,|MA|OA|,A 的纵坐标为 4, ABO 为等边三角形, A 的横坐标为, 点 A 是抛物线 C:x22py(p0)上一点, , p 故选:D 10易系辞上有“河出图,洛出书“之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中如图,白圈为阳数,黑点为阴数若从这 10 个数中任取 3 个数,则这 3 个数中至少有 2 个阳数且能构成等差数列的概率为( ) A B C D 解:河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中如图, 白圈为阳数,黑点为阴数 若从
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 河南省 洛阳市 高考 第二次 考试 数学试卷 理科 答案 解析
链接地址:https://www.77wenku.com/p-208830.html