广东省汕头市2022届高三第一次模拟数学试题(含答案解析)
《广东省汕头市2022届高三第一次模拟数学试题(含答案解析)》由会员分享,可在线阅读,更多相关《广东省汕头市2022届高三第一次模拟数学试题(含答案解析)(31页珍藏版)》请在七七文库上搜索。
1、2022年汕头市普通高考第一次模拟考试数学试题第卷 选择题一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合,则( )A. B. C D. 2. 已知,则( )A. B. 3C. D. 3. 有4名大学生志愿者参加2022年北京冬奥会志愿服务.冬奥会志愿者指挥部随机派这4名志愿者参加冰壶、短道速滑、花样滑冰3个项目比赛的志愿服务,则每个项目至少安排一名志愿者进行志愿服务的概率( )A. B. C. D. 4. 已知各项均为正数的等比数列的前4项和为15,成等差数列,则( )A. B. C. D. 55. 已知,则以下不等式正确的是(
2、)A. B. C. D. 6. 点在圆上运动,直线分别与轴、轴交于、两点,则面积的最大值是( )A B. C. D. 7. 已知,则( )A. B. C. 3D. 8. 定义在R上的偶函数满足,且当时,若关于x的方程至少有8个实数解,则实数m的取值范围是( )A. B. C. D. 二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9. 某校高一(1)班王伟、张诚、赵磊三名同学六次数学测试成绩及班级平均分如下表,根据成绩表作图,则下列说法正确的是( )第一次第二次第三次第四次第五次第六次王伟988791
3、928895张诚907688758680赵磊686573727582班级平均分88.278385.480.375.782.6A. 王伟同学的数学学习成绩始终高于班级平均水平B. 张诚同学的数学学习成绩始终高于班级平均水平C. 赵磊同学的数学学习成绩低于班级平均水平,但与班平均分的差距逐步缩小D. 赵磊同学的数学成绩波动上升10. 已知正实数a,b满足,则以下不等式正确的是( )A. B. C. D. 11. 对于函数,下列结论正确得是( )A. 的值域为B. 在单调递增C. 的图象关于直线对称D. 的最小正周期为12. 如图,正方体的棱长为a,线段上有两个动点E,F,且.则下列结论正确的是(
4、)A. 当E与重合时,异面直线与所成的角为B. 三棱锥的体积为定值C. 在平面内的射影长为D. 当E向运动时,二面角的平面角保持不变第卷 非选择题三、填空题:本题共4小题,每小题5分,共20分.13. 在党史学习教育动员大会上,习近平总书记强调全党同志要做到学史明理、学史增信、学史崇德,学史力行.某单位对200名党员进行党史知识测试,将成绩分成6组:,得到如图所示的频率分布直方图,则_.14. 已知四边形中,点E是的中点,则_.15. 已知双曲线,为C的两条渐近线,过C的右焦点F作的垂线,垂足为A,且该垂线交于点B,若,则曲线C的离心率_.16. 为检测出新冠肺炎的感染者,医学上可采用“二分检
5、测法”、假设待检测的总人数是()将个人的样本混合在一起做第1轮检测(检测一次),如果检测结果为阴性,可确定这批人未感染;如果检测结果为阳性,可确定其中有感染者,则将这批人平均分为两组,每组人的样本混合在一起做第2轮检测,每组检测1次,如此类推:每轮检测后,排除结果为阴性的那组人,而将每轮检测后结果为阳性的组在平均分成两组,做下一轮检测,直到检测出所有感染者(感染者必须通过检测来确定).若待检测的总人数为8,采用“二分检测法”检测,经过4轮共7次检测后确定了所有感染者,则感染者人数最多为_人.若待检测的总人数为,且假设其中有不超过2名感染者,采用“二分检测法”所需检测总次数记为n,则n的最大值为
6、_.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 在;的面积为;这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c的值;若问题中的三角形不存在,说明理由.问题:是否存在中,a,b,c分别为内角A,B,C的对边, _?.18. 已知数列的前n项和为,.(1)证明:数列为等比数列,并求数列的前n项和为;(2)设,证明:.19. 足球比赛全场比赛时间为90分钟,在90分钟结束时成绩持平,若该场比赛需要决出胜负,需进行30分钟的加时赛,若加时赛仍是平局,则采取“点球大战”的方式决定胜负.“点球大战”的规则如下:两队应各派5名队员,双方轮流踢点球,
7、累计进球个数多者胜:如果在踢满5轮前,一队的进球数已多于另一队踢满5次可能射中的球数,则不需再踢,譬如:第4轮结束时,双方进球数比为2:0,则不需再踢第5轮了;若前5轮点球大战中双方进球数持平,则采用“突然死亡法”决出胜负,即从第6轮起,双方每轮各派1人罚点球,若均进球或均不进球,则继续下一轮,直到出现一方进球另一方不进球的情况,进球方胜.(1)已知小明在点球训练中射进点球的概率是.在一次赛前训练中,小明射了3次点球,且每次射点球互不影响,记X为射进点球的次数,求X的分布列及数学期望.(2)现有甲、乙两校队在淘汰赛中(需要分出胜负)相遇,120分钟比赛后双方仍旧打平,须互罚点球决出胜负.设甲队
8、每名球员射进点球概率为,乙队每名球员射进点球的概率为.每轮点球中,进球与否互不影响,各轮结果也互不影响.求在第4轮结束时,甲队进了3个球并刚好胜出的概率.20. 如图,D为圆锥的顶点,O是圆锥底面的圆心,为底面直径,是底面的内接正三角形,且,P是线段上一点.(1)是否存在点P,使得平面,若存在,求出的值;若不存在,请说明理由;(2)当为何值时,直线与面所成的角的正弦值最大.21. 已知,两点分别在x轴和y轴上运动,且,若动点G满足,动点G的轨迹为E.(1)求E的方程;(2)已知不垂直于x轴的直线l与轨迹E交于不同的A、B两点,总满足,证明:直线l过定点.22. 已知函数(且为常数).(1)讨论
9、函数的极值点个数;(2)若对任意的恒成立,求实数的取值范围.2022年汕头市普通高考第一次模拟考试数学试题第卷 选择题一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1 集合,则( )A. B. C. D. 【答案】B【解析】【分析】先求出集合,然后由集合的交集和并集运算对选项进行逐一判断即可得出答案.【详解】,又所以,故选项A、C不正确.,故选项B正确. 选项D不正确.故选:B2. 已知,则( )A. B. 3C. D. 【答案】C【解析】【分析】求出,即得解.【详解】解:由题得,所以.故选:C3. 有4名大学生志愿者参加2022年北京冬奥
10、会志愿服务.冬奥会志愿者指挥部随机派这4名志愿者参加冰壶、短道速滑、花样滑冰3个项目比赛的志愿服务,则每个项目至少安排一名志愿者进行志愿服务的概率( )A. B. C. D. 【答案】D【解析】【分析】先将4人分成3组,其一组有2人,然后将3个项目进行排列,可求出每个项目至少安排一名志愿者进行志愿服务的方法数,再求出4名志愿者参加3个项目比赛的志愿服务的总方法数,再利用古典概型的概率公式求解即可详解】先将4人分成3组,其一组有2人,另外两组各1人,共有种分法,然后将3个项目全排列,共有种排法,所以每个项目至少安排一名志愿者进行志愿服务的方法数为种,因为4名志愿者参加3个项目比赛的志愿服务的总方
11、法数种,所以每个项目至少安排一名志愿者进行志愿服务的概率为,故选:D4. 已知各项均为正数的等比数列的前4项和为15,成等差数列,则( )A. B. C. D. 5【答案】A【解析】【分析】设等比数列的公比,根据题意列出方程组,解得答案.【详解】设等比数列的公比为 , ,故由题意可得: ,解得 , ,故选:A5. 已知,则以下不等式正确的是( )A. B. C. D. 【答案】C【解析】【分析】由于,所以构造函数,然后利用导数判断函数的单调性,再利用单调性比较大小即可【详解】,令,则,当时,当时,所以在上递增,在上递减,因为,所以,因为,所以,所以故选:C6. 点在圆上运动,直线分别与轴、轴交
12、于、两点,则面积的最大值是( )A. B. C. D. 【答案】D【解析】【分析】求出以及点到直线的距离的最大值,利用三角形的面积公式可求得面积的最大值.【详解】易知点、,则,圆的圆心坐标为,半径为,圆心到直线的距离为,所以,点到直线的距离的最大值为,所以,面积的最大值是.故选:D.7. 已知,则( )A. B. C. 3D. 【答案】B【解析】【分析】根据两角和的正切公式可得,利用同角三角函数的基本关系求出,结合二倍角的余弦公式化简原式,计算即可.【详解】由,得,又,得,即,整理,得或(舍去),所以,又,解得,故.故选:B8. 定义在R上的偶函数满足,且当时,若关于x的方程至少有8个实数解,
13、则实数m的取值范围是( )A. B. C. D. 【答案】B【解析】【分析】根据条件可得出函数是以4为周期的周期函数,作出,的图象,根据函数为偶函数,原问题可转化为当时两函数图象至少有4个交点,根据数形结合求解即可.【详解】因为,且为偶函数所以,即,所以函数是以4为周期的周期函数,作出,在同一坐标系的图象,如图,因为方程至少有8个实数解,所以,图象至少有8个交点,根据,的图象都为偶函数可知,图象在y轴右侧至少有4个交点,由图可知,当时,只需,即,当时,只需,即,当时,由图可知显然成立,综上可知,.故选:B二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,
14、全部选对的得5分,部分选对的得2分,有选错的得0分.9. 某校高一(1)班王伟、张诚、赵磊三名同学六次数学测试的成绩及班级平均分如下表,根据成绩表作图,则下列说法正确的是( )第一次第二次第三次第四次第五次第六次王伟988791928895张诚907688758680赵磊686573727582班级平均分88.278.385.480.375.782.6A. 王伟同学的数学学习成绩始终高于班级平均水平B. 张诚同学的数学学习成绩始终高于班级平均水平C. 赵磊同学的数学学习成绩低于班级平均水平,但与班平均分的差距逐步缩小D. 赵磊同学的数学成绩波动上升【答案】ACD【解析】【分析】根据折线图,分别
15、对王伟、张诚、赵磊同学的数学成绩较班级平均分进行分析,即可得出结果.【详解】根据折线图可知,王伟同学的数学成绩稳定且始终高于班级平均分,张诚同学的数学成绩在班级平均分附近波动,赵磊同学的数学成绩低于班级平均分,但与班级平均分的差距逐渐减小,波动的提升,故选:ACD10. 已知正实数a,b满足,则以下不等式正确的是( )A. B. C. D. 【答案】BD【解析】【分析】对于A,对两边同除以进行判断,对于B,利用基本不等式分析判断,对于C,由可得,产生矛盾,对于D,由已知可得,所以,化简后利用基本不等式求解【详解】对于A,因为正实数a,b满足,所以,即,所以A错误,对于B,因为,所以,当且仅当时
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 广东省 汕头市 2022 届高三 第一次 模拟 数学试题 答案 解析
链接地址:https://www.77wenku.com/p-208993.html