2022年苏科版中考数学复习《几何压轴解答题》专题训练(含答案解析)
《2022年苏科版中考数学复习《几何压轴解答题》专题训练(含答案解析)》由会员分享,可在线阅读,更多相关《2022年苏科版中考数学复习《几何压轴解答题》专题训练(含答案解析)(44页珍藏版)》请在七七文库上搜索。
1、2022年春苏科版中考数学复习几何压轴解答题专题训练1如图,在平面直角坐标系中,矩形ABCD的边AB在x轴上,AB、BC的长分别是一元二次方程x27x+120的两个根(BCAB),OA2OB,边CD交y轴于点E,动点P以每秒1个单位长度的速度,从点E出发沿折线段EDDA向点A运动,运动的时间为t(0t6)秒,设BOP与矩形AOED重叠部分的面积为S(1)求点D的坐标;(2)求S关于t的函数关系式,并写出自变量的取值范围;(3)在点P的运动过程中,是否存在点P,使BEP为等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由2如图1,对角线互相垂直的四边形叫做垂美四边形(1)概念理解:如图
2、2,在四边形ABCD中,ABAD,CBCD,问四边形ABCD是垂美四边形吗?请说明理由;(2)性质探究:如图1,四边形ABCD的对角线AC、BD交于点O,ACBD试证明:AB2+CD2AD2+BC2;(3)解决问题:如图3,分别以RtACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE、BG、GE已知AC4,AB5,求GE的长3如图1,在矩形ABCD中,BC3,动点P从B出发,以每秒1个单位的速度,沿射线BC方向移动,作PAB关于直线PA的对称PAB,设点P的运动时间为t(s)(1)若AB2如图2,当点B落在AC上时,显然PAB是直角三角形,求此时t的值;是否存在异于
3、图2的时刻,使得PCB是直角三角形?若存在,请直接写出所有符合题意的t的值?若不存在,请说明理由(2)当P点不与C点重合时,若直线PB与直线CD相交于点M,且当t3时存在某一时刻有结论PAM45成立,试探究:对于t3的任意时刻,结论“PAM45”是否总是成立?请说明理由4操作体验:如图,在矩形ABCD中,点E、F分别在边AD、BC上,将矩形ABCD沿直线EF折叠,使点D恰好与点B重合,点C落在点C处点P为直线EF上一动点(不与E、F重合),过点P分别作直线BE、BF的垂线,垂足分别为点M和N,以PM、PN为邻边构造平行四边形PMQN(1)如图1,求证:BEBF;(2)特例感知:如图2,若DE5
4、,CF2,当点P在线段EF上运动时,求平行四边形PMQN的周长;(3)类比探究:若DEa,CFb如图3,当点P在线段EF的延长线上运动时,试用含a、b的式子表示QM与QN之间的数量关系,并证明;如图4,当点P在线段FE的延长线上运动时,请直接用含a、b的式子表示QM与QN之间的数量关系(不要求写证明过程)5如图是一张矩形纸片,按以下步骤进行操作:()将矩形纸片沿DF折叠,使点A落在CD边上点E处,如图;()在第一次折叠的基础上,过点C再次折叠,使得点B落在边CD上点B处,如图,两次折痕交于点O;()展开纸片,分别连接OB、OE、OC、FD,如图【探究】(1)证明:OBCOED;(2)若AB8,
5、设BC为x,OB2为y,求y关于x的关系式6已知矩形ABCD中,AB5cm,点P为对角线AC上的一点,且AP2cm如图,动点M从点A出发,在矩形边上沿着ABC的方向匀速运动(不包含点C)设动点M的运动时间为t(s),APM的面积为S(cm2),S与t的函数关系如图所示(1)直接写出动点M的运动速度为 cm/s,BC的长度为 cm;(2)如图,动点M重新从点A出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点N从点D出发,在矩形边上沿着DCB的方向匀速运动,设动点N的运动速度为v(cm/s)已知两动点M,N经过时间x(s)在线段BC上相遇(不包含点C),动点M,N相遇后立即同时停止运动
6、,记此时APM与DPN的面积分别为S1(cm2),S2(cm2)求动点N运动速度v(cm/s)的取值范围;试探究S1S2是否存在最大值,若存在,求出S1S2的最大值并确定运动时间x的值;若不存在,请说明理由7在矩形ABCD中,连接AC,点E从点B出发,以每秒1个单位的速度沿着BAC的路径运动,运动时间为t(秒)过点E作EFBC于点F,在矩形ABCD的内部作正方形EFGH(1)如图,当ABBC8时,若点H在ABC的内部,连接AH、CH,求证:AHCH;当0t8时,设正方形EFGH与ABC的重叠部分面积为S,求S与t的函数关系式;(2)当AB6,BC8时,若直线AH将矩形ABCD的面积分成1:3两
7、部分,求t的值8定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线(1)如图1,在ABC中,ABAC,AD是ABC的角平分线,E,F分别是BD,AD上的点求证:四边形ABEF是邻余四边形(2)如图2,在54的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上(3)如图3,在(1)的条件下,取EF中点M,连接DM并延长交AB于点Q,延长EF交AC于点N若N为AC的中点,DE2BE,QB3,求邻余线AB的长9如图,在等边ABC中,AB6cm,动点P从点A出发以1cm/s的速度沿AB匀速运动动点Q同时从点C出发以同样的速度沿BC的延
8、长线方向匀速运动,当点P到达点B时,点P、Q同时停止运动设运动时间为t(s)过点P作PEAC于E,连接PQ交AC边于D以CQ、CE为边作平行四边形CQFE(1)当t为何值时,BPQ为直角三角形;(2)是否存在某一时刻t,使点F在ABC的平分线上?若存在,求出t的值,若不存在,请说明理由;(3)求DE的长;(4)取线段BC的中点M,连接PM,将BPM沿直线PM翻折,得BPM,连接AB,当t为何值时,AB的值最小?并求出最小值10如图,在以点O为中心的正方形ABCD中,AD4,连接AC,动点E从点O出发沿OC以每秒1个单位长度的速度匀速运动,到达点C停止在运动过程中,ADE的外接圆交AB于点F,连
9、接DF交AC于点G,连接EF,将EFG沿EF翻折,得到EFH(1)求证:DEF是等腰直角三角形;(2)当点H恰好落在线段BC上时,求EH的长;(3)设点E运动的时间为t秒,EFG的面积为S,求S关于时间t的关系式11如图,四边形ABCD是矩形,AB20,BC10,以CD为一边向矩形外部作等腰直角GDC,G90点M在线段AB上,且AMa,点P沿折线ADDG运动,点Q沿折线BCCG运动(与点G不重合),在运动过程中始终保持线段PQAB设PQ与AB之间的距离为x(1)若a12如图1,当点P在线段AD上时,若四边形AMQP的面积为48,则x的值为 ;在运动过程中,求四边形AMQP的最大面积;(2)如图
10、2,若点P在线段DG上时,要使四边形AMQP的面积始终不小于50,求a的取值范围12如图,线段AB8,射线BGAB,P为射线BG上一点,以AP为边作正方形APCD,且点C、D与点B在AP两侧,在线段DP上取一点E,使EAPBAP,直线CE与线段AB相交于点F(点F与点A、B不重合)(1)求证:AEPCEP;(2)判断CF与AB的位置关系,并说明理由;(3)求AEF的周长13小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展(1)温故:如图1,在ABC中,ADBC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC6,AD4,求正方形PQMN的边长(2)操作
11、:能画出这类正方形吗?小波按数学家波利亚在怎样解题中的方法进行操作:如图2,任意画ABC,在AB上任取一点P,画正方形PQMN,使Q,M在BC边上,N在ABC内,连接BN并延长交AC于点N,画NMBC于点M,NPNM交AB于点P,PQBC于点Q,得到四边形PQMN小波把线段BN称为“波利亚线”(3)推理:证明图2中的四边形PQMN是正方形(4)拓展:在(2)的条件下,在射线BN上截取NENM,连接EQ,EM(如图3)当tanNBM时,猜想QEM的度数,并尝试证明请帮助小波解决“温故”、“推理”、“拓展”中的问题14在平面直角坐标系中,O为原点,点A(6,0),点B在y轴的正半轴上,ABO30矩
12、形CODE的顶点D,E,C分别在OA,AB,OB上,OD2()如图,求点E的坐标;()将矩形CODE沿x轴向右平移,得到矩形CODE,点C,O,D,E的对应点分别为C,O,D,E设OOt,矩形CODE与ABO重叠部分的面积为S如图,当矩形CODE与ABO重叠部分为五边形时,CE,ED分别与AB相交于点M,F,试用含有t的式子表示S,并直接写出t的取值范围;当S5时,求t的取值范围(直接写出结果即可)15已知:如图,在四边形ABCD中,ABCD,ACB90,AB10cm,BC8cm,OD垂直平分A C点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,
13、速度为1cm/s;当一个点停止运动,另一个点也停止运动过点P作PEAB,交BC于点E,过点Q作QFAC,分别交AD,OD于点F,G连接OP,EG设运动时间为t(s)(0t5),解答下列问题:(1)当t为何值时,点E在BAC的平分线上?(2)设四边形PEGO的面积为S(cm2),求S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使四边形PEGO的面积最大?若存在,求出t的值;若不存在,请说明理由;(4)连接OE,OQ,在运动过程中,是否存在某一时刻t,使OEOQ?若存在,求出t的值;若不存在,请说明理由16阅读下面的例题及点拨,并解决问题:例题:如图,在等边ABC中,M是BC边上一点
14、(不含端点B,C),N是ABC的外角ACH的平分线上一点,且AMMN求证:AMN60点拨:如图,作CBE60,BE与NC的延长线相交于点E,得等边BEC,连接EM易证:ABMEBM(SAS),可得AMEM,12;又AMMN,则EMMN,可得34;由3+14+560,进一步可得125,又因为2+6120,所以5+6120,即:AMN60问题:如图,在正方形A1B1C1D1中,M1是B1C1边上一点(不含端点B1,C1),N1是正方形A1B1C1D1的外角D1C1H1的平分线上一点,且A1M1M1N1求证:A1M1N19017如图1,在矩形ABCD中,AB8,AD10,E是CD边上一点,连接AE,
15、将矩形ABCD沿AE折叠,顶点D恰好落在BC边上点F处,延长AE交BC的延长线于点G(1)求线段CE的长;(2)如图2,M,N分别是线段AG,DG上的动点(与端点不重合),且DMNDAM,设AMx,DNy写出y关于x的函数解析式,并求出y的最小值;是否存在这样的点M,使DMN是等腰三角形?若存在,请求出x的值;若不存在,请说明理由18问题情境:如图1,在正方形ABCD中,E为边BC上一点(不与点B、C重合),垂直于AE的一条直线MN分别交AB、AE、CD于点M、P、N判断线段DN、MB、EC之间的数量关系,并说明理由问题探究:在“问题情境”的基础上(1)如图2,若垂足P恰好为AE的中点,连接B
16、D,交MN于点Q,连接EQ,并延长交边AD于点F求AEF的度数;(2)如图3,当垂足P在正方形ABCD的对角线BD上时,连接AN,将APN沿着AN翻折,点P落在点P处,若正方形ABCD的边长为4,AD的中点为S,求PS的最小值问题拓展:如图4,在边长为4的正方形ABCD中,点M、N分别为边AB、CD上的点,将正方形ABCD沿着MN翻折,使得BC的对应边BC恰好经过点A,CN交AD于点F分别过点A、F作AGMN,FHMN,垂足分别为G、H若AG,请直接写出FH的长19如图,在正方形ABCD中,AB10cm,E为对角线BD上一动点,连接AE,CE,过E点作EFAE,交直线BC于点FE点从B点出发,
17、沿着BD方向以每秒2cm的速度运动,当点E与点D重合时,运动停止设BEF的面积为ycm2,E点的运动时间为x秒 (1)求证:CEEF;(2)求y与x之间关系的函数表达式,并写出自变量x的取值范围;(3)求BEF面积的最大值20箭头四角形模型规律如图1,延长CO交AB于点D,则BOC1+BA+C+B因为凹四边形ABOC形似箭头,其四角具有“BOCA+B+C”这个规律,所以我们把这个模型叫做“箭头四角形”模型应用(1)直接应用:如图2,A+B+C+D+E+F 如图3,ABE、ACE的2等分线(即角平分线)BF、CF交于点F,已知BEC120,BAC50,则BFC 如图4,BOi、COi分别为ABO
18、、ACO的2019等分线(i1,2,3,2017,2018)它们的交点从上到下依次为O1、O2、O3、O2018已知BOCm,BACn,则BO1000C 度(2)拓展应用:如图5,在四边形ABCD中,BCCD,BCD2BADO是四边形ABCD内一点,且OAOBOD求证:四边形OBCD是菱形参考答案1解:(1)x27x+120,x13,x24,BCAB,BC4,AB3,OA2OB,OA2,OB1,四边形ABCD是矩形,点D的坐标为(2,4);(2)设BP交y轴于点F,如图1,当0t2时,PEt,CDAB,OBFEPF,即,OF,SOFPEt;如图2,当2t6时,AP6t,OEAD,OBFABP,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 几何压轴解答题 2022 年苏科版 中考 数学 复习 几何 压轴 解答 专题 训练 答案 解析
链接地址:https://www.77wenku.com/p-209181.html