2022年中考数学复习专题17:函数不等式的证明(含答案解析)
《2022年中考数学复习专题17:函数不等式的证明(含答案解析)》由会员分享,可在线阅读,更多相关《2022年中考数学复习专题17:函数不等式的证明(含答案解析)(39页珍藏版)》请在七七文库上搜索。
1、2022年中考数学复习专题17:函数不等式的证明构造辅助函数证函数不等式1、 解题技巧:把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键.2、 解题程序:(1) 移项(有时需要作简单的恒等变形),使不等式的一端为0,另一端即为所构造的辅助函数;(2) 求,并求在指定区间上的单调性;(3) 求在指定区间上的最值,作比较即得所证.1.例题【例1】已知函数,求证:当时,恒有【解析】 当时,即在上为增函数 当时,即在上为减函数故函数的单调递增区间为,单调递减区间于是函数在上的最大值为,因此,当时,即 (右边得证),
2、现证边面,令, 当 ,即在上为减函数,在上为增函数,故函数在上的最小值为,当时,即,综上可知,当 【例2】证明当【解析】不等式两边取对数得,可化为令(),求导得,所以在上单调递减,又,所以,所以即所以【例3】证明:对任意的正整数n,不等式 都成立.【解析】令,则在上恒正,所以函数在上单调递增,时,恒有 即,对任意正整数n,取2.巩固提升综合练习【练习1】已知函数 求证:在区间上,函数的图象在函数的图象的下方;【解析】设,即,则=当时,=从而在上为增函数,当时 ,即,故在区间上,函数的图象在函数的图象的下方。【练习2】若函数在上可导且满足不等式恒成立,且常数满足,求证:【解析】由已知 x+0 构
3、造函数 , 则 x+0, 从而在R上为增函数。 即 ab【练习3】已知函数,设,证明 :.【解析】证明:对求导,则.在中以b为主变元构造函数,设,则.当时,,因此在内为减函数.当时,因此在上为增函数.从而当时, 有极小值.因为所以,即又设.则.当时,.因此在上为减函数.因为所以,即.函数不等式的变形原理【一】幂函数与的积商形式对于这类函数,一般来说,每次求导数,多项式的次数就降低一次,但最终的导数形式需化成不含的式子,如,需两次求导才能化成不含的式子,如果把分离出来,只需一次求导就可化成不含的式子,所以,在解决这类问题时,方法是:尽可能把分离出来.1.例题【例1】已知函数,曲线 在点处的切线方
4、程为y=2(1)求a,b的值;(2)当且时,求证: 【解析】(1),由直线的斜率为0,且过点得,化简得: ,解得:,.(2).当时,不等式,当时,不等式.令,.当时,所以函数在单调递增, 当时,故成立.当时,故也成立.所以当且时,不等式总成立.2.巩固提升综合练习【练习1】已知函数.(1)若曲线在点处的切线与直线平行,求的值;(2)在(1)条件下,求函数的单调区间和极值;(3)当,且时,证明:.【解析】(1)函数的定义域为,所以.又曲线在点处的切线与直线平行,所以,即.(2)令,得,当变化时,的变化情况如下表:+0-极大值由表可知:的单调递增区间是,单调递减区间是,所以在处取得极大值,的极大值
5、为.(3)当时,.由于,要证,只需证明,令,则.因为,所以,故在上单调递增,当时,即成立故当时,有,即.【二】幂函数、与的混合形式对于同时含有幂函数、与的形式,一般的处理方法或思路是:把与含幂函数形式的代数式配对;把与含幂函数形式的代数式配对.1.例题【例1】设函数.(1)求在区间1,2上的最小值;(2)证明:对任意的,都有.【解析】(1)由题,令,则,令,解得,令,解得,在上单调递减,在上单调递增.,在区间上单调递增,.(2)证明:要证,只要证,从而只要证,令,在上单调递减,在上单调递增,在上单调递增,在上单调递减,对任意的,都有.(等号不能同时取得),【例2】已知函数.(1)若上存在极值,
6、求实数的取值范围;(2)求证:当时,【解析】(2)要证即证 令,则再令,则当时,在上是增函数,在上是增函数当时, 令,则当时,即在上是减函数当时,所以,即2.巩固提升综合练习【练习1】已知函数(1)求函数的单调区间;(2)若,证明:【解析】(1)函数的定义域为,求导得,令,令g(x)0,解得-1x0,令g(x)0解得x0,所以单调增区间为减区间为g(x)g(0)=0,即f(x)0在定义域上恒成立,所以的单调减区间为 ;(2) 证明:将不等式变形为,因为,即不等式等价于,由(1)有所以在上单调递减,所以要证原不等式成立,需证当x0时,xex-1,令,则,可知h(x)0在恒成立,即h(x)在上单调
7、递增,故h(x)h(0)=0,即xex-1,故f(x)f(ex-1),即,即.【练习2】已知函数.(1)当,求函数的单调区间;(2)证明:当时,.【解析】(1)函数,当且时,;当时,所以函数的单调递减区间是,单调递增区间是.(2)问题等价于.令,则,当时,取最小值.设,则.在上单调递增,在上单调递减. , ,故当时,. 函数不等式的单零点隐零点问题对于隐零点问题,题目结构特征往往呈现出指数函数、对数函数、幂函数三者中的两者混合形态,之所以要引入隐零点,归根到底还是导数零点无法求出,在引入隐零点后,接下来的转换原则概括为:“指对幂上转”,意思是:把指数结构、对数结构往幂函数上转换.1.例题【例1
8、】已知函数在点处的切线方程为(1)求a,b的值;(2)求证:【解析】(1)函数的导数为,函数在点处的切线斜率为,由切线方程,可得,解得,;(2)证明:,导数为,易知为增函数,且.所以存在,有,即,且时,递增;时,递减,可得处取得最小值,可得成立【例2】设函数,e为自然对数的底数.(1)若在上单调递增,求的取值范围;(2)证明:若,则【解析】(1)因为在上单调递增,所以恒成立. 令,当, 在上单调递增,依题意有,得 (2)由(1)可知,在上单调递增,当时, 存在,使得, 且当时,即,在上单调递减当时,即,在上单调递增所以在上的最小值为 , ,即成立 或者 , ,即成立【例3】已知函数(1)若曲线
9、在处切线与坐标轴围成的三角形面积为,求实数的值;(2)若,求证:【解析】(1),则为切线斜率又,切点为曲线在处切成方程为当时,当时,(易知)则切线与坐标轴围成三角形面积为得所以或(2)法一:时,要证的不等式为,即令,则易知递增,仅有一解且,即当时,递减;当时,递增从而最小值为,故原不等式成立法二:时,要证的不等式为令,则故问题化为证不等式恒成立时,令,则,当时,递减;当时,递增,从而原不等式成立2.巩固提升综合练习【练习1】已知,.()和的导函数分别为和,令,判断在上零点个数;()当时,证明.【解析】(I), 与在上单调递增 在上单调递增, 唯一的,使得在内有且只有一个零点(II)令,则.由(
10、I)可知:存在使得,即:当时,单调递减;当时,单调递增【练习2】已知函数,曲线在点处的切线方程为:.(1)求,的值;(2)设,求函数在上的最大值.【解析】(1)由切线方程知,当时, ,由切线方程知, (2)由(1)知, 当时,当时,故单调递减在上的最大值为 当时,存在,使当时,故单调递减当时,故单调递增在上的最大值为或 又,当时,在上的最大值为当时,在上的最大值为 当时,当时,故单调递增在上的最大值为 综上所述,当时,在上的最大值为当时,在上的最大值为 【练习3】已知函数,其中a为非零常数讨论的极值点个数,并说明理由;若,证明:在区间内有且仅有1个零点【解析】解:由已知,的定义域为,当时,从而
11、,所以在内单调递减,无极值点;当时,令,则由于在上单调递减,所以存在唯一的,使得,所以当时,即;当时,即,所以当时,在上有且仅有一个极值点.综上所述,当时,函数无极值点;当时,函数只有一个极值点;证明:由知令,由得,所以在内有唯一解,从而在内有唯一解,不妨设为,则在上单调递增,在上单调递减,所以是的唯一极值点令,则当时,故在内单调递减,从而当时,所以从而当时,且又因为,故在内有唯一的零点函数不等式的双零点问题【一】双零点是二次函数的零点 当研究的双零点是二次函数的零点时,此时可认为两零点的关系是明确的,可根据韦达定理得到两零点之间满足的关系,消元后进一步求解.1.例题【例1】已知函数若在处取得
12、极值,求函数的单调区间若是函数的两个极值点,且,求证:【解析】(1)的定义域为, ,在处取得极值,.时,;时,的单调增区间为,单调减区间为,有两个极值点,故得证【例2】已知函数.(1)讨论函数的极值点的个数;(2)若有两个极值点,证明:.【解析】(1).当时,.当时,所以在上单调递增;当时,所以在上单调递减.即函数只有一个极大值点,无极小值点.当时,令,得.当时,所以在上单调递增;当时,所以在上单调递减.即函数有一个极大值点,有一个极小值点.当时,此时恒成立,即在上单调递增,无极值点.综上所述,当时,有且仅有一个极大值点,即只有1个极值点;当时,有一个极大值点和一个极小值点,即有2个极值点;当
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年中 数学 复习 专题 17 函数 不等式 证明 答案 解析
链接地址:https://www.77wenku.com/p-209241.html