安徽省安庆市2021-2022学年七年级下期中综合素质调研数学试题(含答案解析)
《安徽省安庆市2021-2022学年七年级下期中综合素质调研数学试题(含答案解析)》由会员分享,可在线阅读,更多相关《安徽省安庆市2021-2022学年七年级下期中综合素质调研数学试题(含答案解析)(19页珍藏版)》请在七七文库上搜索。
1、20212022学年度第二学期期中综合素质调研七年级数学试题一、选择题(每小题4分,共40分)1. 下列各数没有平方根的是( )A. 0B. C. D. 2. 在实数,0,中,无理数有( )A. 1个B. 2个C. 3个D. 4个3. 估计68立方根的大小在( )A. 2与3之间B. 3与4之间C. 4与5之间D. 5与6之间4. 若,则下列各式不成立的是( )A. B. C. D. 5. 不等式组的解集在数轴上表示,正确的是( )A. B. C. D. 6. 下列计算正确的是( )A. B. C. D. 7. 四个小朋友玩跷跷板,他们的体重分别为P、Q、R、S,如图所示,则他们的体重大小关系
2、是()A PRSQB. QSPRC. SPQRD. SPRQ8. 已知,则等于( )A. B. C. D. 29. 将,这三个数按从小到大的顺序排列,正确的结果是( )A B. C. D. 10. 如果不等式组有解,则的取值范围是( )A. B. C. D. 二、填空题(每题5分,共20分)11. 扫描隧道显微镜发明后,世界上便诞生了一门新学科,就是“纳米技术”已知52个纳米的长度为0.000000052米,用科学记数法表示这个数为_米12. 若,则的值为_.13. 一个正数的两个平方根分别是和,则这个正数是_14. 当_时,的解是非正数三、(本大题共2小题,每小题8分,满分16分)15. 计
3、算:16. 解不等式组,并在数轴上表示不等式组的解集四、(本大题共2小题,每小题8分,满分16分)17. 已知,求的值18. 已知是算术平方根,是的立方根,求的值五、(本大题共2小题,每小题10分,满分20分)19. 在实数范围内定义一种新运算“”其运算规则为,.(1)若,则_(2)求不等式的负整数解21. 观察下列一组等式:(1)以上这些等式中,你有何发现?利用你的发现填空_;( );( )(2)利用你发现的规律来计算:六、(本题满分12分)23. 阅读:我们知道,于是要解不等式,我们可以分两种情况去掉绝对值符号,转化为我们熟悉不等式,按上述思路,我们有以下解法:解:(1)当,即时:解这个不
4、等式,得:由条件,有:(2)当,即时,解这个不等式,得:由条件,有:如图,综合(1)、(2)原不等式的解为根据以上思想,请探究完成下列2个小题:(1); (2)七、(本题满分12分)24. 如图所示,回答下列问题(1)大正方形的面积是多少?(2)梯形,的面积,分别是多少?(3)试求与的值;(4)由(3)你发现了什么?请用含,的式子表示你的结论八、(本题满分14分)26. 为了保护环境,某化工厂一期工程完成后购买了3台甲型和2台乙型污水处理设备,共花费资金54万元,且每台乙型设备的价格是每台甲型设备价格的75%,实际运行中发现,每台甲型设备每月能处理污水200吨,每台乙型设备每月能处理污水160
5、吨,且每年用于每台甲型设备的各种维护费和电费为1万元,每年用于每台乙型设备的各种维护费和电费为1.5万元.今年该厂二期工程即将完成,产生的污水将大大增加,于是该厂决定再购买甲、乙两型设备共8台用于二期工程的污水处理,预算本次购买资金不超过84万元,预计二期工程完成后每月将产生不少于1300吨污水.(1)请你计算每台甲型设备和每台乙型设备的价格各是多少元?(2)请你求出用于二期工程的污水处理设备的所有购买方案;(3)若两种设备的使用年限都为10年,请你说明在(2)的所有方案中,哪种购买方案的总费用最少?(总费用设备购买费各种维护费和电费)20212022学年度第二学期期中综合素质调研七年级数学试
6、题一、选择题(每小题4分,共40分)1. 下列各数没有平方根的是( )A. 0B. C. D. 【1题答案】【答案】D【解析】【分析】根据平方根的意义可得负数没有平方根,从而可得答案【详解】解: 没有平方根,故选D【点睛】本题考查了平方根,关键是掌握正数有两个平方根,负数没有平方根,0的平方根是02. 在实数,0,中,无理数有( )A. 1个B. 2个C. 3个D. 4个【2题答案】【答案】B【解析】【详解】解:是无限循环小数,是有理数;0是整数,是有理数;是无限不循环小数,是无理数;无理数;=3,是有理数无理数共2个,故选B【点睛】本题考查无理数的概念3. 估计68的立方根的大小在( )A.
7、 2与3之间B. 3与4之间C. 4与5之间D. 5与6之间【3题答案】【答案】C【解析】【详解】解:因为436853,所以68的立方根的大小在4与5之间故选C4. 若,则下列各式不成立的是( )A. B. C. D. 【4题答案】【答案】D【解析】【分析】根据不等式的性质进行逐一分析判断【详解】解:A、根据不等式的性质(2),不等式两边同乘以3,不等号的方向不变故该选项成立;B、根据不等式的性质(1),不等式两边同加上5,不等号的方向不变故该选项成立;C、根据不等式的性质(1)和(2),不等式的两边同乘以,再同减去1,不等号的方向不变故该选项成立;D、根据不等式的性质(1)和(3),不等式两
8、边同乘以-1,则不等号的方向改变,再同加上1,即有1-x1-y故该选项不成立;故选:D【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题关键5. 不等式组的解集在数轴上表示,正确的是( )A. B. C. D. 【5题答案】【答案】B【解析】【详解】不等式组的解集为故选B6. 下列计算正确的是( )A. B. C. D. 【6题答案】【答案】D【解析】【分析】由合并同类项可判断A,C,由同底数幂的除法可判断B,由积的乘方运算可判断D,从而可得答案.【详解】解:不是同类项,不能合并,故A不符合题意;故B不符合题意;故C不符合题意;,故D符合题意;故选D【点睛】本题考查的是合并同类
9、项,同底数幂的除法,积的乘方运算,掌握以上基础运算是解本题的关键.7. 四个小朋友玩跷跷板,他们的体重分别为P、Q、R、S,如图所示,则他们的体重大小关系是()A. PRSQB. QSPRC. SPQRD. SPRQ【7题答案】【答案】D【解析】【分析】本题要求掌握不等式的相关知识,利用“跷跷板”的不平衡来判断四个数的大小关系,体现了“数形结合”的数学思想【详解】观察前两幅图易发现SPR,再观察第一幅和第三幅图可以发现RQ故选D【点睛】考点:一元一次不等式的应用,利用数形结合的思想解题是关键8. 已知,则等于( )A. B. C. D. 2【8题答案】【答案】A【解析】【分析】利用同底数幂的除
10、法和幂的乘方的性质的逆用计算即可【详解】解: , ,故选:A【点睛】本题考查同底数的幂的除法,幂的乘方的性质,逆用性质,把原式转化为是解决本题的关键9. 将,这三个数按从小到大的顺序排列,正确的结果是( )A. B. C. D. 【9题答案】【答案】A【解析】【分析】根据零指数幂,负整数指数幂和平方的运算法则,分别计算出各式的值再进行比较即可【详解】解:=6,=1,=9,又169,故选A【点睛】本题考查零指数幂,负整数指数幂和平方的运算负整数指数幂为相应的正整数指数幂的倒数;任何非0实数的0次幂等于110. 如果不等式组有解,则的取值范围是( )A. B. C. D. 【10题答案】【答案】B
11、【解析】【分析】先解不等式组中的不等式,再根据不等式组有解,结合“大小小大取中间”,从而可得答案.【详解】解:由得: 不等式组有解, 故选B【点睛】本题考查的是解一元一次不等式组,根据不等式组有解确定字母参数的范围,掌握“大小小大取中间”是解本题的关键.二、填空题(每题5分,共20分)11. 扫描隧道显微镜发明后,世界上便诞生了一门新学科,就是“纳米技术”已知52个纳米的长度为0.000000052米,用科学记数法表示这个数为_米【11题答案】【答案】【解析】【详解】绝对值1的正数也可以利用科学记数法表示,一般形式为a10n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 安徽省 安庆市 2021 2022 学年 年级 下期 综合素质 调研 数学试题 答案 解析
链接地址:https://www.77wenku.com/p-211380.html