2022届天津市和平区高考二模数学试卷(含答案)
《2022届天津市和平区高考二模数学试卷(含答案)》由会员分享,可在线阅读,更多相关《2022届天津市和平区高考二模数学试卷(含答案)(9页珍藏版)》请在七七文库上搜索。
1、0.36 频率/组距 0.08 0.16 0.24 12 13 14 15 16 17 舒张压/kPa 2022 届天津市和平区高考二模数学试题届天津市和平区高考二模数学试题 一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的) 1已知全集为R,集合| 21Axx ,集合2|0Bxxx,则R()AC B=( ) A( 2,1 B( 1,1 C(, 2)1,) D(,0(1,) 2设a b,R则a ab b“”是ab“”的( ) A充分不必要条件 B必要不充分条件 C既不充分也不必要条件 D充要条件 3函数2( )=xxxf xee的大致图象是( ) A B C D 4为研究某药品的
2、疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位kPa)的分组区间为12,13)13,14)14,15)15,16)16,17),将其按从左到右的顺序分别编号为第一组,第二组,第五组下图是根据试验数据制成的频率分布直方图已知第一组与第二组共有 20 人,第三组中没有疗效的有 6 人,则第三组中有疗效的人数为( ) A6 B8 C12 D18 5已知0.4453log 32log 50abc,则a b c,的大小关系为( ) Acba Bbca Cacb Dbac 6已知圆锥底面圆的直径为 3,圆锥的高为3 32,该圆锥的内切球也是棱长为a的正四面体的外接球,则1 1 o y x
3、 1 1 o y x 1 1 o y x 1 1 o y x 此正四面体的棱长a为( ) A2 B322 C3 D9322 7已知抛物线22(0)ypx p交双曲线222210,0 xyabab()的渐近线于 A,B 两点(异于坐标原点) ,双曲线的离心率为2,AOB的面积为 64,则抛物线的焦点坐标为( ) A(2 0), B( 2 0) , C(4 0), D( 4 0) , 8函数( )= cos()(0,0,0)2f xAxA的部分图象如图所示,已知函数( )f x在区间0 m,有且仅有 3 个极大值点,则下列说法错误的个数是( ) 函数( )f x的最小正周期为 2; 点9 04,为
4、( )f x的一个对称中心; 函数( )f x的图象向左平移32个单位后得到 = sin()y Ax的图象; 函数( )f x在区间3 025m,上是增函数 A1 个 B2 个 C3 个 D4 个 9已知函数( )f x满足当0 x时,2 (2)( )f xf x,且当( 2,0 x时,( )11f xx ;当0 x 时,( )log (01)af xx aa, 且.若函数( )f x的图象上关于原点对称的点恰好有 3 对, 则a的取值范围 ( ) A(4 64), B(9 64), C(9 625), D(625), 二、填空题(本大题共 6 小题, 每小题 5 分, 共 30 分把答案写在
5、题中横线上) 10复数z满足 3+4zii (i是虚数单位),则复数z在复平面内所表示的点的坐标为 11若13nx()展开式中各项系数的和等于 64,则展开式中2x的系数是 12 设直线2yxa与圆22:220C xyay相交于A B,两点, 若2 3AB , 则圆C的面积为 13某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有 4 个红球、6 个白球的甲箱和装有 5 个红球、5 个白球的乙箱中,各随机摸出 1 个球,在摸出的 2 个球中,若都是红球,则获一等奖;若只有 1 个红球,则获二等奖;若没有红球,则不获奖求顾客抽奖 1 次能获奖的概率 ;若某顾客有 3 次抽奖
6、机会,则该顾客在 3 次抽奖中至多有两次获得一等奖的概率 14已知a b c,均为正数,且4()abcab,则abc的最小值为 . 15如图,在平面四边形ABCD中,ABBC,60BCD,2 3150333ADCBEEC CBEBDD, ; 若点F为边AD上的动点,则EF BF的最小值为 y -1 x O A D F E C B 三、解答题(本大题共 5 小题,共 75 分,解答应写出文字说明,证明过程或演算步骤) 16(本小题满分 14 分) 在ABC中,角A B C,所对的边分别为a b c,. ()232 cos 3ac bBc若, 求 的值; ()sincossin() 22ABBab
7、若, 求的值; (III)22sinsincos=4 3ACBACBS若, 且, 三角形的面积,求边b的值. 17(本小题满分 15 分)如图,在四棱台1111ABCDABC D中,底面四边形ABCD为菱形,60ABC,111112AAABAB,1DABCAA 平面,若点M是AD的中点 ()求证:111C MABB A平面; ()求直线1C M与平面1AD D所成角的余弦值; (III)棱BC上存在点E,使得312CE , 求平面1EAD与平面1AD D的夹角的正弦值 18(本小题满分 15 分)已知点 M 是椭圆 C:222210yxabab上一点,1F,2F分别为椭圆 C 的上、下焦点,焦
8、距为 4,当1260FMF,12FMF的面积为533 ()求椭圆 C 的方程; () 设过点2F的直线l和椭圆 C 交于两点 A, B, 是否存在直线l, 使得21OAFOBF与(O 是坐标原点)的面积比值为 5:7,若存在,求出直线l的方程;若不存在,说明理由 19(本小题满分 15 分)已知数列 na的前n项和为nS,满足22(N )nnSan,数列 nb满足1-1111=1(2N )2nnbnnbb, 且满足,. ()求数列 na、 nb的通项公式; ()若数列 nc满足1 nnnnbcan,为奇数, ,为偶数求1niic; (III)记21nniiTa,数列nnaT的前n项和为nR,求
9、证:1311.421nnR(1) 20(本小题满分 16 分)设a b,为实数,且1a ,已知函数2( )( )()xg xah xbxe x,R. ()当ae时,曲线2( )= ( )g xy h xe的切线方程为,求b的值; C M D A B ()求函数( )= ( )( )f xg xh x的单调区间; (III)若对任意22be,函数( )= ( )( )f xg xh x有两个不同的零点,求a的取值范围. 参考答案及评分标准参考答案及评分标准 一、一、 选择题(选择题(95分分=45分)分) 1 2 3 4 5 6 7 8 9 A D D C B A B A C 二、填空题(二、填
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 天津市 和平区 高考 数学试卷 答案
链接地址:https://www.77wenku.com/p-213754.html