2022届江苏省高考押轴数学试卷(含答案)
《2022届江苏省高考押轴数学试卷(含答案)》由会员分享,可在线阅读,更多相关《2022届江苏省高考押轴数学试卷(含答案)(13页珍藏版)》请在七七文库上搜索。
1、2022年江苏省高考押轴数学试卷一、单项选择题:本题共8小题,每小题5分,共40分 1.已知集合,则( )A.B.C.D.2.已知复数(,i为虚数单位)在复平面内对应的点位于第二象限,且,则复数( )A.B.C.或D.3.设,则“”是“”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.函数的周期为,则其单调递增区间为( )A.B.C.D.5八音是中国古代对乐器的总称,指金石土革丝木匏竹八类,每类又包括若干种乐器.现有土丝竹三类乐器,其中土有缶埙2种乐器;丝有琴瑟筑琵琶4种乐器;竹有箫笛笼3种乐器.现从这三类乐器中各选1种乐器分配给甲乙丙三位同学演奏,则不
2、同的分配方案有( )A24种B72种C144种D288种6.已知数列的首项,前n项和满足,则数列的前n项和为( )A.B.C.D.7.已知抛物线的焦点为F,过点F的直线交拋物线于A,B两点,延长FB交准线于点C,分别过点A,B作准线的垂线,垂足分别记为M,N,若,则的面积为( )A.B.4C.D.28.定义在上的函数的导函数为,满足,且当时,则不等式的解集为( )A.B.C.D.二、多项选择题:本题共4小题,每小题5分,共20分在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分9已知,且,则( )A的最小值是1B的最小值是C的最小值是4D的最小值是51
3、0.已知向量,则( )A.若,则B.若,则C.的最小值为D.若向量与向量的夹角为锐角,则的取值范围是11.设函数(,是常数,),若在区间上具有单调性,且,则下列说法正确的是( )A.的最小正周期为B.的单调递减区间为,C.图像的对称轴为直线,D.的图像可由的图像向左平移个单位长度得到12.已知P为抛物线上的动点,在抛物线C上,过抛物线C的焦点F的直线l与抛物线C交于A,B两点,则( )A.的最小值为4B.若线段AB的中点为M,则的面积为C.若,则直线l的斜率为2D.过点作两条直线与抛物线C分别交于点G,H,且满足EF平分,则直线GH的斜率为定值三、填空题:本题共4小题,每小题5分,共20分13
4、已知向量,若,则_14.过抛物线的焦点作圆的切线,切点为.若,则_,_.15.已知双曲线与方向向量为的直线交于A,B两点,线段AB的中点为,则该双曲线的渐近线方程是_.16.已知空间四边形ABCD的各边长及对角线BD的长度均为6,平面平面CBD,点M在AC上,且,过点M作空间四边形ABCD外接球的截面,则截面面积最大值与最小值之比为_.四、解答题:本题共6小题,共70分解答应写出文字说明、证明过程或演算步骤17(10分)已知的内角,所对的边分别为,且,(1)求;(2)在下列三个条件中选择一个作为补充条件,判断该三角形是否存在?若存在,求出三角形的面积;若不存在,说明理由边上的中线长为,边上的中
5、线长为,三角形的周长为注:如果选择多个条件分别解答,按第一个解答计分18. (12分)已知的内角A,B,C所对的边分别为a,b,c,D是边AB上一点,.(1)若CD平分,求a;(2)若,求c.19. (12分)已知数列的前n项和为,.(1)求;(2)令,证明:.20.(12分)为丰富学生的课外生活,某中学要求高一年级全体学生在国庆黄金周期间,在家长的陪同下开展以“读万卷书,行万里路”为主题的研学活动,学校结合研学主题向学生们推荐了一份由历史文化类和红色文化类组成的10个景点的清单,要求每位学生选择其中的3个景点参观游览,并将参观现场的互动照片以及参观的感想在各班级微信群中与大家分享.已知学校推
6、荐的景点清单中历史文化类景点有7个,红色文化类景点有6个,其中有部分景点既属于历史文化类景点又属于红色文化类景点.(1)求某学生选择参观的3个景点中至少有一个红色文化类景点的概率;(2)设某学生选择参观的3个景点中既属于历史文化类景点又属于红色文化类景点的个数为X,求随机变量X的分布列和数学期望.21(12分)已知椭圆过点,离心率为(1)求椭圆的标准方程;(2)直线与椭圆交于两点,过作直线的垂线,垂足分别为,点为线段的中点,为椭圆的左焦点求证:四边形为梯形22. (12分)已知函数.(1)求函数的单调区间;(2)若不等式恒成立,求a的取值范围.答案及解析1.答案:C解析:,故选C.2.答案:A
7、解析:由,得,解得.因为复数z在复平面内对应的点位于第二象限,所以,即,所以复数.故选A.3.答案:B解析:,由可得.易知当时,但由不能推出,“”是“”的必要不充分条件,故选B.4.答案:C解析:周期,.由,得.5 答案: C解析:从这三类乐器中各选1种乐器的选法有(种),将3种乐器分配给甲乙丙三位同学演奏的方法有(种),因此不同的分配方案共有(种).故选C6.答案:A解析:由得,即,所以,所以,两式作差,得,即,所以,所以或,又,故,所以数列是以1为首项,1为公差的等差数列,所以数列的前n项和,故选A.7.答案:A解析:由题意可知,则,抛物线的准线方程为直线,.因为,所以,所以,所以,所以,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 江苏省 高考 数学试卷 答案
链接地址:https://www.77wenku.com/p-215226.html