2022年高考全国甲卷数学(理)试题(含参考答案解析)
《2022年高考全国甲卷数学(理)试题(含参考答案解析)》由会员分享,可在线阅读,更多相关《2022年高考全国甲卷数学(理)试题(含参考答案解析)(25页珍藏版)》请在七七文库上搜索。
1、2022年高考全国甲卷数学(理)试题一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若,则( )A. B. C. D. 2. 某社区通过公益讲座以普及社区居民的垃圾分类知识为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则( )A. 讲座前问卷答题的正确率的中位数小于B. 讲座后问卷答题的正确率的平均数大于C. 讲座前问卷答题正确率的标准差小于讲座后正确率的标准差D. 讲座后问卷答题的正确率的极差大于讲座前正确率的极差3. 设全集,集合,
2、则( )A. B. C. D. 4. 如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为( )A. 8B. 12C. 16D. 205. 函数在区间的图象大致为( )A B. C. D. 6. 当时,函数取得最大值,则( )A. B. C. D. 17. 在长方体中,已知与平面和平面所成的角均为,则( )A. B. AB与平面所成的角为C. D. 与平面所成的角为8. 沈括的梦溪笔谈是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图,是以O为圆心,OA为半径的圆弧,C是的AB中点,D在上,“会圆术”给出的弧长的近似值s的计算公式:当时,( )A
3、. B. C. D. 9. 甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为,侧面积分别为和,体积分别为和若,则( )A. B. C. D. 10. 椭圆的左顶点为A,点P,Q均在C上,且关于y轴对称若直线的斜率之积为,则C的离心率为( )A B. C. D. 11. 设函数在区间恰有三个极值点、两个零点,则的取值范围是( )A. B. C. D. 12. 已知,则( )A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分.13. 设向量,夹角的余弦值为,且,则_14. 若双曲线的渐近线与圆相切,则_15. 从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为_1
4、6. 已知中,点D在边BC上,当取得最小值时,_三、解答题:共70分解答应写出文字说明、证明过程或演算步骤第1721题为必考题,每个试题考生都必须作答第22、23题为选考题,考生根据要求作答.(一)必考题:共60分17. 记为数列的前n项和已知(1)证明:是等差数列;(2)若成等比数列,求的最小值18. 在四棱锥中,底面(1)证明:;(2)求PD与平面所成角的正弦值19. 甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局三个项目比赛结束后,总得分高的学校获得冠军已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立(1)求
5、甲学校获得冠军的概率;(2)用X表示乙学校的总得分,求X的分布列与期望20. 设抛物线的焦点为F,点,过F的直线交C于M,N两点当直线MD垂直于x轴时,(1)求C的方程;(2)设直线与C的另一个交点分别为A,B,记直线的倾斜角分别为当取得最大值时,求直线AB的方程21. 已知函数(1)若,求a的取值范围;(2)证明:若有两个零点,则环(二)选考题:共10分请考生在第22、23题中任选一题作答如果多做,则按所做的第一题计分选修4-4:坐标系与参数方程22. 在直角坐标系中,曲线的参数方程为(t为参数),曲线的参数方程为(s为参数)(1)写出的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立
6、极坐标系,曲线的极坐标方程为,求与交点的直角坐标,及与交点的直角坐标选修4-5:不等式选讲23. 已知a,b,c均为正数,且,证明:(1);(2)若,则2022年高考全国甲卷数学(理)试题一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若,则( )A. B. C. D. 【答案】C【解析】【分析】由共轭复数的概念及复数的运算即可得解.【详解】故选 :C2. 某社区通过公益讲座以普及社区居民的垃圾分类知识为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正
7、确率如下图:则( )A. 讲座前问卷答题的正确率的中位数小于B. 讲座后问卷答题的正确率的平均数大于C. 讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D. 讲座后问卷答题的正确率的极差大于讲座前正确率的极差【答案】B【解析】【分析】由图表信息,结合中位数、平均数、标准差、极差的概念,逐项判断即可得解.【详解】讲座前中位数为,所以错;讲座后问卷答题的正确率只有一个是个,剩下全部大于等于,所以讲座后问卷答题的正确率的平均数大于,所以B对;讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C错;讲座后问卷答题的正确率的极差为,讲座前问卷答题的正
8、确率的极差为,所以错.故选:B.3. 设全集,集合,则( )A. B. C. D. 【答案】D【解析】【分析】解方程求出集合B,再由集合的运算即可得解.【详解】由题意,所以,所以.故选:D.4. 如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为( )A. 8B. 12C. 16D. 20【答案】B【解析】【分析】由三视图还原几何体,再由棱柱的体积公式即可得解.【详解】由三视图还原几何体,如图,则该直四棱柱的体积.故选:B.5. 函数在区间的图象大致为( )A. B. C. D. 【答案】A【解析】【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可
9、得解.【详解】令,则,所以为奇函数,排除BD;又当时,所以,排除C.故选:A.6. 当时,函数取得最大值,则( )A. B. C. D. 1【答案】B【解析】【分析】根据题意可知,即可解得,再根据即可解出【详解】因为函数定义域为,所以依题可知,而,所以,即,所以,因此函数在上递增,在上递减,时取最大值,满足题意,即有故选:B.7. 在长方体中,已知与平面和平面所成的角均为,则( )A. B. AB与平面所成的角为C. D. 与平面所成的角为【答案】D【解析】【分析】根据线面角的定义以及长方体的结构特征即可求出【详解】如图所示:不妨设,依题以及长方体的结构特征可知,与平面所成角为,与平面所成角为
10、,所以,即,解得对于A,A错误;对于B,过作于,易知平面,所以与平面所成角为,因为,所以,B错误;对于C,C错误;对于D,与平面所成角为,而,所以D正确故选:D8. 沈括的梦溪笔谈是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图,是以O为圆心,OA为半径的圆弧,C是的AB中点,D在上,“会圆术”给出的弧长的近似值s的计算公式:当时,( )A. B. C. D. 【答案】B【解析】【分析】连接,分别求出,再根据题中公式即可得出答案.【详解】解:如图,连接,因为是的中点,所以,又,所以三点共线,即,又,所以,则,故,所以.故选:B.9. 甲、乙两个圆锥的母线长相等,侧面展开图的圆
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年高 全国 数学 试题 参考答案 解析
文档标签
- 参考答案
- 2022年全国新高考数学试题A卷含答案
- 2022年全国卷新高考音乐试题含参考答案解析
- 2022年全国卷新高考英语试题含参考答案解析
- 2022年高考全国甲卷英语理试题含参考答案解析
- 2022年高考全国英语试卷
- 2022年高考全国英语
- 2022年高考全国乙卷英语试卷含参考答案解析
- 2022年高考全国甲卷生物试卷含答案解析
- 全国高考甲卷数学2022
- 2022年全国卷新高考数学试题含参考答案解析
- 2022年高考全国甲卷理综试题含参考答案
- 2022年高考全国甲卷历史试卷含答案解析
- 2022年全国II卷新高考数学试题含参考答案解析
- 2022年高考全国卷语文试卷含参考答案解析
- 2022年高考全国甲卷语文试卷含参考答案解析
- 2022年高考全国乙卷语文试卷含参考答案解析
- 2022年高考全国甲卷化学试卷含答案解析
链接地址:https://www.77wenku.com/p-215854.html