2022年北京市高考数学真题(含参考答案解析)
《2022年北京市高考数学真题(含参考答案解析)》由会员分享,可在线阅读,更多相关《2022年北京市高考数学真题(含参考答案解析)(22页珍藏版)》请在七七文库上搜索。
1、2022年普通高等学校招生全国统一考试(北京卷)数学一、选择题共10小题,每小题4分,共40分在每小题列出的四个选项中,选出符合题目要求的一项1. 已知全集,集合,则( )A. B. C. D. 2. 若复数z满足,则( )A. 1B. 5C. 7D. 253. 若直线是圆的一条对称轴,则( )A. B. C. 1D. 4 己知函数,则对任意实数x,有( )A. B. C. D. 5 已知函数,则( )A. 在上单调递减B. 在上单调递增C. 在上单调递减D. 在上单调递增6. 设是公差不为0的无穷等差数列,则“为递增数列”是“存在正整数,当时,”的( )A. 充分而不必要条件B. 必要而不充
2、分条件C. 充分必要条件D. 既不充分也不必要条件7. 在北京冬奥会上,国家速滑馆“冰丝带”使用高效环保的二氧化碳跨临界直冷制冰技术,为实现绿色冬奥作出了贡献如图描述了一定条件下二氧化碳所处的状态与T和的关系,其中T表示温度,单位是K;P表示压强,单位是下列结论中正确的是( )A. 当,时,二氧化碳处于液态B. 当,时,二氧化碳处于气态C. 当,时,二氧化碳处于超临界状态D. 当,时,二氧化碳处于超临界状态8. 若,则( )A. 40B. 41C. D. 9. 已知正三棱锥的六条棱长均为6,S是及其内部的点构成的集合设集合,则T表示的区域的面积为( )A. B. C. D. 10. 在中,P为
3、所在平面内的动点,且,则的取值范围是( )A. B. C. D. 第二部分(非选择题 共110分)二、填空题共5小题,每小题5分,共25分11. 函数的定义域是_12. 已知双曲线渐近线方程为,则_13. 若函数的一个零点为,则_;_14. 设函数若存在最小值,则a的一个取值为_;a的最大值为_15. 己知数列各项均为正数,其前n项和满足给出下列四个结论:的第2项小于3; 为等比数列;为递减数列; 中存在小于的项其中所有正确结论的序号是_三、解答题共6小愿,共85分解答应写出文字说明,演算步骤或证明过程16. 在中,(1)求;(2)若,且的面积为,求的周长17. 如图,在三棱柱中,侧面为正方形
4、,平面平面,M,N分别为,AC的中点(1)求证:平面;(2)再从条件、条件这两个条件中选择一个作为已知,求直线AB与平面BMN所成角的正弦值条件:;条件:注:如果选择条件和条件分别解答,按第一个解答计分18. 在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到以上(含)的同学将获得优秀奖为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,935,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:985,9.65,9.20,9.
5、16假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立(1)估计甲在校运动会铅球比赛中获得优秀奖的概率;(2)设X是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X的数学期望E(X);(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)19. 已知椭圆:的一个顶点为,焦距为(1)求椭圆E的方程;(2)过点作斜率为k的直线与椭圆E交于不同的两点B,C,直线AB,AC分别与x轴交于点M,N,当时,求k的值20. 已知函数(1)求曲线在点处的切线方程;(2)设,讨论函数在上单调性;(3)证明:对任意的,有21. 已知为有穷整数数列给定正整数m,若对任意的,在Q
6、中存在,使得,则称Q为连续可表数列(1)判断是否为连续可表数列?是否为连续可表数列?说明理由;(2)若为连续可表数列,求证:k的最小值为4;(3)若为连续可表数列,且,求证:参考答案解析一、选择题共10小题,每小题4分,共40分 1. 已知全集,集合,则( )A. B. C. D. 【答案】D【解析】【分析】利用补集的定义可得正确的选项【详解】由补集定义可知:或,即,故选:D2. 若复数z满足,则( )A. 1B. 5C. 7D. 25【答案】B【解析】【分析】利用复数四则运算,先求出,再计算复数的模【详解】由题意有,故故选:B3. 若直线是圆的一条对称轴,则( )A. B. C. 1D. 【
7、答案】A【解析】【分析】若直线是圆的对称轴,则直线过圆心,将圆心代入直线计算求解【详解】由题可知圆心为,因为直线是圆的对称轴,所以圆心在直线上,即,解得故选:A4. 己知函数,则对任意实数x,有( )A. B. C. D. 【答案】C【解析】【分析】直接代入计算,注意通分不要计算错误【详解】,故A错误,C正确;,不常数,故BD错误;故选:C5. 已知函数,则( )A. 在上单调递减B. 在上单调递增C. 在上单调递减D. 在上单调递增【答案】C【解析】【分析】化简得出,利用余弦型函数的单调性逐项判断可得出合适的选项.【详解】因为.对于A选项,当时,则在上单调递增,A错;对于B选项,当时,则在上
8、不单调,B错;对于C选项,当时,则在上单调递减,C对;对于D选项,当时,则在上不单调,D错.故选:C.6. 设是公差不为0的无穷等差数列,则“为递增数列”是“存在正整数,当时,”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C【解析】【分析】设等差数列的公差为,则,利用等差数列的通项公式结合充分条件、必要条件的定义判断可得出结论.【详解】设等差数列的公差为,则,记为不超过的最大整数.若为单调递增数列,则,若,则当时,;若,则,由可得,取,则当时,所以,“是递增数列”“存在正整数,当时,”;若存在正整数,当时,取且,假设,令可得,且,当时
9、,与题设矛盾,假设不成立,则,即数列是递增数列.所以,“是递增数列”“存在正整数,当时,”.所以,“是递增数列”是“存在正整数,当时,”的充分必要条件.故选:C.7. 在北京冬奥会上,国家速滑馆“冰丝带”使用高效环保的二氧化碳跨临界直冷制冰技术,为实现绿色冬奥作出了贡献如图描述了一定条件下二氧化碳所处的状态与T和的关系,其中T表示温度,单位是K;P表示压强,单位是下列结论中正确的是( )A. 当,时,二氧化碳处于液态B. 当,时,二氧化碳处于气态C. 当,时,二氧化碳处于超临界状态D. 当,时,二氧化碳处于超临界状态【答案】D【解析】【分析】根据与的关系图可得正确的选项.【详解】当,时,此时二
10、氧化碳处于固态,故A错误.当,时,此时二氧化碳处于液态,故B错误.当,时,与4非常接近,故此时二氧化碳处于固态,另一方面,时对应的是非超临界状态,故C错误.当,时,因, 故此时二氧化碳处于超临界状态,故D正确.故选:D8. 若,则( )A. 40B. 41C. D. 【答案】B【解析】【分析】利用赋值法可求的值.【详解】令,则,令,则,故,故选:B.9. 已知正三棱锥的六条棱长均为6,S是及其内部的点构成的集合设集合,则T表示的区域的面积为( )A. B. C. D. 【答案】B【解析】【分析】求出以为球心,5为半径的球与底面的截面圆的半径后可求区域的面积.【详解】设顶点在底面上的投影为,连接
11、,则为三角形的中心,且,故.因为,故,故的轨迹为以为圆心,1为半径的圆,而三角形内切圆的圆心为,半径为,故的轨迹圆在三角形内部,故其面积为故选:B10. 在中,P为所在平面内的动点,且,则的取值范围是( )A. B. C. D. 【答案】D【解析】【分析】依题意建立平面直角坐标系,设,表示出,根据数量积的坐标表示、辅助角公式及正弦函数的性质计算可得;【详解】解:依题意如图建立平面直角坐标系,则,因为,所以在以为圆心,为半径的圆上运动,设,所以,所以,其中,因为,所以,即;故选:D第二部分(非选择题 共110分)二、填空题共5小题,每小题5分,共25分11. 函数的定义域是_【答案】【解析】【分
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 北京市 高考 数学 参考答案 解析
链接地址:https://www.77wenku.com/p-215860.html