2022年全国中考数学真题分项汇编专题14:圆与正多边形(含答案解析)
《2022年全国中考数学真题分项汇编专题14:圆与正多边形(含答案解析)》由会员分享,可在线阅读,更多相关《2022年全国中考数学真题分项汇编专题14:圆与正多边形(含答案解析)(72页珍藏版)》请在七七文库上搜索。
1、专题14 圆与正多边形一选择题1(2022山东青岛)如图,正六边形内接于,点M在上,则的度数为( )A. B. C. D. 2(2022浙江嘉兴)如图,在O中,BOC130,点A在上,则BAC的度数为()A55B65C75D1303(2022江苏连云港)如图,有一个半径为2的圆形时钟,其中每个刻度间的弧长均相等,过9点和11点的位置作一条线段,则钟面中阴影部分的面积为()ABCD4(2022湖北武汉)如图,在四边形材料中,现用此材料截出一个面积最大的圆形模板,则此圆的半径是()ABCD5(2022湖北宜昌)如图,四边形内接于,连接,若,则()ABCD6(2022四川德阳)如图,点是的内心,的延
2、长线和的外接圆相交于点,与相交于点,则下列结论:;若,则;若点为的中点,则;其中一定正确的个数是()A1B2C3D47(2022湖南株洲)如图所示,等边的顶点在上,边、与分别交于点、,点是劣弧上一点,且与、不重合,连接、,则的度数为()ABCD8(2022甘肃武威)大自然中有许多小动物都是“小数学家”,如图1,蜜蜂的蜂巢结构非常精巧、实用而且节省材料,多名学者通过观测研究发现:蜂巢巢房的横截面大都是正六边形如图2,一个巢房的横截面为正六边形,若对角线的长约为8mm,则正六边形的边长为()A2mmBCD4mm9(2022湖南邵阳)如图,O是等边ABC的外接圆,若AB=3,则O的半径是()ABCD
3、10(2022四川眉山)如图是不倒翁的主视图,不倒翁的圆形脸恰好与帽子边沿,分别相切于点,不倒翁的鼻尖正好是圆心,若,则的度数为()ABCD11(2022浙江湖州)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点如图,在66的正方形网格图形ABCD中,M,N分别是AB,BC上的格点,BM4,BN2若点P是这个网格图形中的格点,连接PM,PN,则所有满足MPN45的PMN中,边PM的长的最大值是()AB6CD12(2022四川遂宁)如图,圆锥底面圆半径为7cm,高为24cm,则它侧面展开图的面积是()Acm2Bcm2Ccm2Dcm21314(2022浙江宁波)已知圆锥的底面半径为
4、,母线长为,则圆锥的侧面积为()ABCD15(2022甘肃武威)如图,一条公路(公路的宽度忽略不计)的转弯处是一段圆弧(),点是这段弧所在圆的圆心,半径,圆心角,则这段弯路()的长度为()ABCD16(2022浙江温州)如图,是的两条弦,于点D,于点E,连结,若,则的度数为()ABCD17(2022山东泰安)如图,点I为的内心,连接并延长交的外接圆于点D,点E为弦的中点,连接,当,时,的长为()A5B4.5C4D3.518(2022浙江丽水)某仿古墙上原有一个矩形的门洞,现要将它改为一个圆弧形的门洞,圆弧所在的圆外接于矩形,如图已知矩形的宽为,高为,则改建后门洞的圆弧长是()ABCD1920(
5、2022四川凉山)家具厂利用如图所示直径为1米的圆形材料加工成一种扇形家具部件,已知扇形的圆心角BAC90,则扇形部件的面积为()A米2B米2C米2D米2二填空题21(2022江苏宿迁)如图,在正六边形ABCDEF中,AB=6,点M在边AF上,且AM=2若经过点M的直线l将正六边形面积平分,则直线l被正六边形所截的线段长是_22(2022湖南衡阳)如图,用一个半径为6 cm的定滑轮拉动重物上升,滑轮旋转了,假设绳索粗细不计,且与轮滑之间没有滑动,则重物上升了_cm(结果保留)2324(2022浙江湖州)如图,已知AB是O的弦,AOB120,OCAB,垂足为C,OC的延长线交O于点D若APD是所
6、对的圆周角,则APD的度数是_25(2022云南)某中学开展劳动实习,学生到教具加工厂制作圆锥,他们制作的圆锥,母线长为30cm,底面圆的半径为10 cm,这种圆锥的侧面展开图的圆心角度数是_26(2022浙江宁波)如图,在ABC中,AC=2,BC=4,点O在BC上,以OB为半径的圆与AC相切于点A,D是BC边上的动点,当ACD为直角三角形时,AD的长为_27(2022四川自贡)一块圆形玻璃镜面碎成了几块,其中一块如图所示,测得弦长20厘米,弓形高为2厘米,则镜面半径为_厘米28(2022浙江温州)若扇形的圆心角为,半径为,则它的弧长为_29(2022新疆)如图,的半径为2,点A,B,C都在上
7、,若则的长为_(结果用含有的式子表示)30(2022四川泸州)如图,在中,半径为1的在内平移(可以与该三角形的边相切),则点到上的点的距离的最大值为_31(2022浙江嘉兴)如图,在廓形中,点C,D在上,将沿弦折叠后恰好与,相切于点E,F已知,则的度数为_;折痕的长为_三解答题32(2022四川成都)如图,在中,以为直径作,交边于点,在上取一点,使,连接,作射线交边于点(1)求证:;(2)若,求及的长33(2022山东滨州)如图,已知AC为的直径,直线PA与相切于点A,直线PD经过上的点B且,连接OP交AB于点M求证:(1)PD是的切线;(2)34(2022四川泸州)如图,点在以为直径的上,平
8、分交于点,交于点,过点作的切线交的延长线于点(1)求证:;(2)若,求的长35(2022四川南充)如图,为的直径,点C是上一点,点D是外一点,连接交于点E(1)求证:是的切线(2)若,求的值36(2022江苏扬州)如图,为的弦,交于点,交过点的直线于点,且(1)试判断直线与的位置关系,并说明理由;(2)若,求的长37(2022江苏宿迁)如图,在网格中,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点、均为格点【操作探究】在数学活动课上,佳佳同学在如图的网格中,用无刻度的直尺画了两条互相垂直的线段、,相交于点并给出部分说理过程,请你补充完整:解:在网格中取格点,构建两个直角三角形,分别是
9、ABC和CDE在RtABC中, 在RtCDE中, ,所以所以=因为 = =90,所以 + =90,所以 =90,即(1)【拓展应用】如图是以格点为圆心,为直径的圆,请你只用无刻度的直尺,在上找出一点P,使=,写出作法,并给出证明:(2)【拓展应用】如图是以格点为圆心的圆,请你只用无刻度的直尺,在弦上找出一点P使=,写出作法,不用证明38(2022四川乐山)如图,线段AC为O的直径,点D、E在O上,=,过点D作DFAC,垂足为点F连结CE交DF于点G(1)求证:CG=DG;(2)已知O的半径为6,延长AC至点B,使求证:BD是O的切线39(2022天津)已知为的直径,C为上一点,连接(1)如图,
10、若C为的中点,求的大小和的长;(2)如图,若为的半径,且,垂足为E,过点D作的切线,与的延长线相交于点F,求的长40(2022江苏宿迁)如图,在中, =45,以为直径的与边交于点(1)判断直线与的位置关系,并说明理由;(2)若,求图中阴影部分的面积41(2022浙江湖州)如图,已知在RtABC中,D是AB边上一点,以BD为直径的半圆O与边AC相切,切点为E,过点O作,垂足为F(1)求证:;(2)若,求AD的长42(2022山东泰安)问题探究(1)在中,分别是与的平分线若,如图,试证明;将中的条件“”去掉,其他条件不变,如图,问中的结论是否成立?并说明理由迁移运用(2)若四边形是圆的内接四边形,
11、且,如图,试探究线段,之间的等量关系,并证明43(2022云南)如图,四边形ABCD的外接圆是以BD为直径的O,P是O的劣狐BC上的任意一点,连接PA、PC、PD,延长BC至E,使BD=BCBE(1)请判断直线DE与O的位置关系,并证明你的结论;(2)若四边形ABCD是正方形,连接AC,当P与C重合时,或当P与B重合时,把转化为正方形ABCD的有关线段长的比,可得是否成立?请证明你的结论44(2022陕西)如图,是的直径,是的切线,、是的弦,且,垂足为E,连接并延长,交于点P(1)求证:;(2)若的半径,求线段的长45(2022湖南衡阳)如图,为的直径,过圆上一点作的切线交的延长线与点,过点作
12、交于点,连接(1)直线与相切吗?并说明理由;(2)若,求的长46(2022湖南株洲)如图所示,的顶点、在上,顶点在外,边与相交于点,连接、,已知(1)求证:直线是的切线;(2)若线段与线段相交于点,连接求证:;若,求的半径的长度47(2022湖南怀化)如图,点A,B,C,D在O上,求证:(1)ACBD;(2)ABEDCE48(2022江西)(1)课本再现:在中,是所对的圆心角,是所对的圆周角,我们在数学课上探索两者之间的关系时,要根据圆心O与的位置关系进行分类图1是其中一种情况,请你在图2和图3中画出其它两种情况的图形,并从三种位置关系中任选一种情况证明;(2)知识应用:如图4,若的半径为2,
13、分别与相切于点A,B,求的长49(2022甘肃武威)如图,内接于,是的直径,是延长线上一点,且(1)求证:是的切线;(2)若,求线段的长50(2022浙江绍兴)如图,半径为6的O与RtABC的边AB相切于点A,交边BC于点C,D,B=90,连接OD,AD(1)若ACB=20,求的长(结果保留)(2)求证:AD平分BDO51(2022浙江金华)如图1,正五边形内接于,阅读以下作图过程,并回答下列问题,作法:如图2,作直径;以F为圆心,为半径作圆弧,与交于点M,N;连接(1) 求的度数(2)是正三角形吗?请说明理由(3)从点A开始,以长为半径,在上依次截取点,再依次连接这些分点,得到正n边形,求n
14、的值专题14 圆与正多边形一选择题1(2022山东青岛)如图,正六边形内接于,点M在上,则的度数为( )A. B. C. D. 【答案】D【分析】先求出正六边形的中心角,再利用圆周角定理求解即可【详解】解:连接OC、OD、OE,如图所示:正六边形内接于,COD= =60,则COE=120,CME= COE=60,故选:D【点睛】本题考查正多边形的中心角、圆周角定理,熟练掌握正n多边形的中心角为是解答的关键2(2022浙江嘉兴)如图,在O中,BOC130,点A在上,则BAC的度数为()A55B65C75D130【答案】B【分析】利用圆周角直接可得答案【详解】解: BOC130,点A在上, 故选B
15、【点睛】本题考查的是圆周角定理的应用,掌握“同圆或等圆中,同弧所对的圆周角是它所对的圆心角的一半”是解本题的关键3(2022江苏连云港)如图,有一个半径为2的圆形时钟,其中每个刻度间的弧长均相等,过9点和11点的位置作一条线段,则钟面中阴影部分的面积为()ABCD【答案】B【分析】阴影部分的面积等于扇形面积减去三角形面积,分别求出扇形面积和等边三角形的面积即可【详解】解:如图,过点OC作ODAB于点D,AOB=2=60,OAB是等边三角形,AOD=BOD=30,OA=OB=AB=2,AD=BD=AB=1,OD=,阴影部分的面积为,故选:B【点睛】本题考查了扇形面积、等边三角形的面积计算方法,掌
16、握扇形面积、等边三角形的面积的计算方法是正确解答的关键4(2022湖北武汉)如图,在四边形材料中,现用此材料截出一个面积最大的圆形模板,则此圆的半径是()ABCD【答案】B【分析】如图所示,延长BA交CD延长线于E,当这个圆为BCE的内切圆时,此圆的面积最大,据此求解即可【详解】解:如图所示,延长BA交CD延长线于E,当这个圆为BCE的内切圆时,此圆的面积最大,BAD=90,EADEBC,B=90,即,EB=32cm,设这个圆的圆心为O,与EB,BC,EC分别相切于F,G,H,OF=OG=OH,此圆的半径为8cm,故选B【点睛】本题主要考查了三角形内切圆半径与三角形三边的关系,勾股定理,正确作
17、出辅助线是解题的关键5(2022湖北宜昌)如图,四边形内接于,连接,若,则()ABCD【答案】B【分析】根据圆内接四边形的性质求出,根据圆周角定理可得,再根据计算即可【详解】四边形内接于, ,由圆周角定理得, , 故选:B【点睛】此题考查圆周角定理和圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键6(2022四川德阳)如图,点是的内心,的延长线和的外接圆相交于点,与相交于点,则下列结论:;若,则;若点为的中点,则;其中一定正确的个数是()A1B2C3D4【答案】D【分析】根据点是的内心,可得,故正确;连接BE,CE,可得ABC+ACB =2(CBE+BCE),从而得到CBE+BCE=
18、60,进而得到BEC=120,故正确; ,得出,再由点为的中点,则成立,故正确;根据点是的内心和三角形的外角的性质,可得,再由圆周角定理可得,从而得到DBE=BED,故正确;即可求解【详解】解:点是的内心,故正确;如图,连接BE,CE,点是的内心,ABC=2CBE,ACB=2BCE,ABC+ACB =2(CBE+BCE),BAC=60,ABC+ACB=120,CBE+BCE=60,BEC=120,故正确;点是的内心,,点为的中点,线段AD经过圆心O,成立,故正确;点是的内心,BED=BAD+ABE,CBD=CAD,DBE=CBE+CBD=CBE+CAD,DBE=BED,故正确;正确的有4个故选
19、:D【点睛】本题主要考查了三角形的内心问题,圆周角定理,三角形的内角和等知识,熟练掌握三角形的内心问题,圆周角定理,三角形的内角和等知识是解题的关键7(2022湖南株洲)如图所示,等边的顶点在上,边、与分别交于点、,点是劣弧上一点,且与、不重合,连接、,则的度数为()ABCD【答案】C【分析】根据等边三角形的性质可得,再根据圆内接四边形的对角互补即可求得答案【详解】解:是等边三角形,故选C【点睛】本题考查了等边三角形的性质及圆内接四边形的性质,熟练掌握圆内接四边形的对角互补是解题的关键8(2022甘肃武威)大自然中有许多小动物都是“小数学家”,如图1,蜜蜂的蜂巢结构非常精巧、实用而且节省材料,
20、多名学者通过观测研究发现:蜂巢巢房的横截面大都是正六边形如图2,一个巢房的横截面为正六边形,若对角线的长约为8mm,则正六边形的边长为()A2mmBCD4mm【答案】D【分析】如图,连接CF与AD交于点O,易证COD为等边三角形,从而CD=OC=OD=AD,即可得到答案【详解】连接CF与AD交于点O,为正六边形,COD= =60,CO=DO,AO=DO=AD=4mm,COD为等边三角形,CD=CO=DO=4mm,即正六边形的边长为4mm,故选:D【点睛】本题考查了正多边形与圆的性质,正确把握正六边形的中心角、半径与边长的关系是解题的关键9(2022湖南邵阳)如图,O是等边ABC的外接圆,若AB
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 全国 中考 数学 真题分项 汇编 专题 14 正多边形 答案 解析
链接地址:https://www.77wenku.com/p-217446.html