冀教版九年级数学上册《第24章 一元二次方程》教案
《冀教版九年级数学上册《第24章 一元二次方程》教案》由会员分享,可在线阅读,更多相关《冀教版九年级数学上册《第24章 一元二次方程》教案(116页珍藏版)》请在七七文库上搜索。
1、第二十四章 一元二次方程1.经历从实际问题出发建立一元二次方程的过程,体会方程是刻画现实世界中数量关系的重要模型,进一步发展符号感.2.了解一元二次方程及方程的解的概念,能用配方法、公式法、因式分解法解数字系数的一元二次方程.3.会用一元二次方程根的判别式判断方程根的情况.4.了解一元二次方程的根与系数之间的关系.5.在了解一元二次方程的过程中体会转化的数学思想.6.能根据具体问题中的数量关系,列出一元二次方程并求得结果,能根据具体的问题的实际意义检验结果的合理性.1.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.2.通过对一元二次方程解法的探究,培养学生数学推理的严密性及严
2、谨性,同时培养学生寻求简便方法的探索精神及创新意识.3.通过列一元二次方程解应用题,进一步培养学生建立数学模型的能力,同时提高学生分析问题、解决问题的能力.1.通过学习一元二次方程的概念,体会类比思想在数学中的应用.2.通过学习配方法、因式分解法解一元二次方程,向学生渗透转化思想在研究数学问题中的应用,同时体验知识之间的联系,激发学生爱数学、学数学的兴趣.3.通过对求根公式的推导,向学生渗透数学中的分类思想.4.体会数学来源于生活,又应用到生活,由设未知数列方程向学生渗透方程的思想方法,培养学生应用数学解决问题的意识.方程是科学研究中重要的数学思想方法,也是后续内容学习的基础和工具,它是初中数
3、学中的基础内容,在初中数学中占有重要地位,一元二次方程是在学习了一元一次方程、二元一次方程(组)、不等式知识的后继学习,它和学习一元一次方程、二元一次方程组一样,也可以表达许多实际问题中的数量关系,是分析和解决许多实际问题的重要的数学模型之一.本章在初中代数中起着承前启后的作用,一方面对以前学过的一些内容进行综合应用,如探究解方程的方法时开平方、一元一次方程、完全平方公式、因式分解等知识都有应用,另一方面,一元二次方程又是前边所学知识的继续和发展,是学好二次函数不可缺少的知识,也是学好高中数学的奠基工程.本章主要让学生进一步体会在实际问题中建立方程模型,一元二次方程的概念、基本解法及应用都是重
4、要的基础知识,解方程的基本思想是化归思想,将“二次”方程转化成两个“一次”方程求解,蕴含了重要的数学思想和数学方法,其中配方法是初中数学中的基本方法,通过对配方法的学习,探究出一元二次方程的求根公式,进而探究出根与系数之间的关系.本章内容自始至终置于实际情景中,使学生充分感受和经历在实际问题中抽象出数学模型,体会方程是刻画现实世界的一个有效模型,体会数学在实际中的应用价值.通过学习本章内容进一步培养学生化实际问题为数学问题的能力和分析问题、解决问题的能力,培养应用数学的意识.【重点】1.一元二次方程及其有关概念.2.用配方法、公式法、因式分解法解一元二次方程.3.能应用根的判别式、根与系数之间
5、的关系解决有关问题.4.利用实际问题建立一元二次方程的数学模型,并解决这个问题.【难点】1.用配方法解一元二次方程.2.选择合适的方法解一元二次方程.3.在实际问题中寻求等量关系,从而抽象出一元二次方程数学模型.1.一元二次方程是初中数学最重要的数学模型之一,通过建立一元二次方程模型解决实际问题,可以使学生更深入地体会数学与现实世界的联系,所以从实际问题抽象出一元二次方程的有关概念及数学符号表示,学生用类比思想理解并掌握一元二次方程、解的概念及一般形式.2.一元二次方程的解法中,渗透“降次”的转化思想,即把方程转化为两个一元一次方程,教材由实际背景引入,建立一元二次方程模型,探究将二次降为一次
6、的方法,转化为一元一次方程求解.配方法是推导一元二次方程的求根公式的工具,引导学生用配方法导出求根公式,从而体会不同解法的优缺点与相互的联系,培养学生灵活解一元二次方程的能力与扎实的运算功底.3.一元二次方程根的判别式的学习,使学生理解一元二次方程根的存在情况与系数之间的关系.探究一元二次方程根与系数的关系,不仅为了一元二次方程理论的完整性,更重要的是初高中的衔接问题,通过这节课的学习,培养学生学习数学的严谨性和数学思维能力.4.数学来源于生活,并应用于生活中,数学与生活息息相关,应用一元二次方程解决实际问题,引导学生分析其中的已知量、未知量和等量关系,建立一元二次模型,得出方程的解,并检验所
7、得的结果是否符合实际,得出具有一般意义的一元二次方程的解法,让学生经历“问题情景建立模型求解验证”的数学活动过程,培养学生建模思想,逐步形成应用意识.24.1一元二次方程1课时24.2解一元二次方程3课时24.3一元二次方程根与系数的关系*1课时24.4一元二次方程的应用3课时回顾与反思1课时24.1 一元二次方程1.理解一元二次方程的概念.2.掌握一元二次方程的一般形式,正确认识二次项系数、一次项系数及常数项.3.体会一元二次方程是刻画实际问题的重要数学模型.4.理解一元二次方程解的概念.1.通过一元二次方程的引入,培养学生建模思想,归纳、分析问题及解决问题的能力.2.体会数学来源于生活,又
8、回归生活的理念.3.由设未知数、列方程向学生渗透方程的思想,从而进一步培养学生数学思维能力.1.培养学生主动探究知识、自主学习和合作交流的意识.2.激发学生学数学的兴趣,体会学数学的快乐,培养用数学的意识.3.体会数学知识与现实世界的联系.【重点】一元二次方程的概念及一般形式.【难点】1.由具体问题抽象出一元二次方程的转化过程.2.正确识别一般式中的“项”及“系数”.【教师准备】多媒体课件.【学生准备】预习教材P3435.导入一:【课件展示】教材章前图,请同学们阅读章前问题,并回答下列问题:一个长为10 m的梯子斜靠在墙上,梯子的顶端A处到地面的距离为8 m.如果梯子的顶端沿墙面下滑1 m,那
9、么梯子的底端B在地面上滑动的距离也是1 m吗?你能列方程解决这个问题吗?学生分析等量关系:AB2=AC2+BC2.设梯子的底端在地面上滑动的距离x m,于是得方程102=(8-1)2+(6+x)2.整理得x2+12x-15=0.【问题】这个方程是不是我们前边学过的方程?导入二:【课件展示】观察下列方程:(1)3x-2=0,(2)x2+2x-3=0,(3)12x+52=0,(4)23x2-5=0.哪些是我们学过的一元一次方程?其他方程与一元一次方程有什么不同?【师生活动】复习方程、一元一次方程及方程的解的概念.【学生活动】小组合作交流,观察新方程,分析元和次,尝试为新方程定义.设计意图让学生在实
10、际问题中建立一元二次方程模型,体会数学来源于生活,通过复习一元一次方程的概念,让学生用类比的方法从已有的知识体系中自然地构建出新知识.过渡语方程是一类重要的数学模型,在现实生活中具有广泛的应用.在学习了一元一次方程、二元一次方程组和分式方程的基础上,现在我们来学习一元二次方程.共同探究一教材中观察与思考中的实际问题,设未知数,建立方程模型【课件展示】如图所示,某学校要在校园内墙边的空地上修建一个长方形的存车处,存车处的一面靠墙(墙长22 m),另外三面用90 m长的铁栅栏围起来.如果这个存车处的面积为700 m2,求这个长方形存车处的长和宽.思路一教师引导学生思考并回答:长方形存车处的长与宽之
11、间的数量关系为,该问题中的等量关系为.(1)设长方形存车处的宽(靠墙的一边)为x m,则它的长为m,长方形存车处的面积为.由此,我们可以列出方程,化简得.(2)设长方形存车处的长(与墙垂直的一边)为x m,则它的宽为m,长方形存车处的面积为.由此,我们可以列出方程,化简得.【师生活动】教师引导分析,学生回答,通过所设未知数,根据题意列出方程,老师点评并分析如何建立一元二次方程的数学模型,整理所列出的方程.【课件展示】解:(1)设长方形存车处的宽(靠墙的一边)为x m,则它的长为90-x2 m.根据题意,可得方程90-x2x=700.整理,得x2-90x+1400=0.(2)设长方形存车处的长(
12、与墙垂直的一边)为x m,则它的宽为(90-2x)m.根据题意,可得方程(90-2x)x=700.整理,得x2-45x+350=0.思路二小组活动,共同探究,思考下列问题:(1)分析题意,题中的已知条件是什么?(2)分析题意,题中的等量关系是什么?(3)如何设未知数,根据题中等量关系怎样列方程?(4)分析下面小明和小亮列方程的做法,他们的解题思路和所列方程是否正确?【课件展示】小明的做法:设长方形存车处的宽(靠墙的一边)为x m,则它的长为90-x2 m.根据题意,可得方程90-x2x=700.整理,得x2-90x+1400=0.小亮的做法:设长方形存车处的长(与墙垂直的一边)为x m,则它的
13、宽为(90-2x)m.根据题意,可得方程(90-2x)x=700.整理,得x2-45x+350=0.【师生活动】教师先出示问题(1)(3),学生讨论交流后出示问题(4),学生再进行交流.教师在巡视过程中及时解决疑难问题,学生讨论后小组展示结果,教师及时补充和点评.设计意图师生共同分析探讨实际问题中的等量关系,列出方程,为引出一元二次方程的概念做铺垫,同时提高学生建立方程模型解决生活中实际问题的能力.共同探究二共同归纳概念请口答下面问题.(1)上面方程整理后含有几个未知数?(2)上面方程中未知数x的最高次数是几次?(3)方程两边都是整式吗?(4)你能类比一元一次方程的概念,给出一元二次方程的定义
14、吗?【学生活动】小组合作交流,类比一元一次方程定义,尝试给出一元二次方程的定义.老师点评归纳:一元二次方程满足三个条件:(1)都只含一个未知数x;(2)它们的最高次数都是2次;(3)方程两边都是整式.【课件展示】只含有一个未知数,并且未知数的最高次数为2的整式方程,叫做一元二次方程.设计意图学生通过合作交流,类比一元一次方程的定义得出一元二次方程的定义,体会类比思想在数学中的应用,同时培养学生归纳总结能力及合作交流能力.过渡语我们了解了一元二次方程的有关概念,现在同学们比一比谁理解得更透彻吧.【课件展示】请抢答下列各式是否为一元二次方程:(1)2x2=9;(2)2x2-1=3y;(3)4x2+
15、3=2x;(4)1x2-1+3x=0;(5)5x2-2x+3;(6)2x(x+2)=5x-2;(7)3x(x-1)=3x2-5.【师生活动】学生以抢答的形式来完成该题,并让学生说出判断理由.教师对学生给出的答案作出点评和归纳,并让学生归纳判断易错点先化简再判断.设计意图通过抢答进一步强化一元二次方程的概念满足的三个条件,同时提高学生学习数学的兴趣和积极性.共同探究三一元二次方程的一般形式【思考1】类比一元一次方程的一般形式,你能不能写出一元二次方程的一般形式?【课件展示】一元二次方程的一般形式为:ax2+bx+c=0(a0).其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c
16、是常数项.【思考2】(1)任何一个一元二次方程是否都可以整理成一般形式?(2)一元二次方程的二次项系数为什么不能为0?(任何一个一元二次方程都能化成一般形式;当一元二次方程的二次项系数a=0,b0时,方程为一元一次方程)【师生活动】学生独立思考后,小组合作交流,教师对学生的展示进行点评、归纳.设计意图通过概括一元二次方程的一般形式,让学生理解掌握数学符号语言在数学中的应用,更深入地理解一元二次方程的概念,同时强调了一元二次方程概念中的易错点.过渡语我们又知道了一元二次方程的一般形式,试试我们能不能完成以下问题.【课件展示】做一做:将下列一元二次方程化为一般形式,并指出它们的二次项系数、一次项系
17、数和常数项.(1)4x2=3(x+4);(2)(2x-3)(3x-2)=10;(3)x+222x-33=7;(4)(2x-1)(2x+1)=(3x+1)2.解析一元二次方程的一般形式是ax2+bx+c=0(a0),因此,通过去分母、去括号、移项、合并同类项等法则先将一元二次方程进行整理,再根据有关概念求解.解:(1)原方程可化为:4x2-3x-12=0.其中二次项系数为4,一次项系数为-3,常数项为-12.(2)原方程可化为:6x2-13x-4=0.其中二次项系数为6,一次项系数为-13,常数项为-4.(3)原方程可化为:2x2+x-48=0.其中二次项系数为2,一次项系数为1,常数项为-48
18、.(4)原方程可化为:5x2+6x+2=0.其中二次项系数为5,一次项系数为6,常数项为2.追问:求一元二次方程的二次项系数、一次项系数及常数项时应注意什么?(一是先化简成一般形式;二是书写系数时不要遗漏前边的符号)【师生活动】学生独立思考回答,教师进行点评归纳.设计意图通过做一做,让学生了解求一元二次方程的项或项的系数时,先化成一元二次方程一般形式再求解,加深对一元二次方程一般形式的理解.共同探究四一元二次方程的根【思考】1.什么是一元二次方程的解?(使一元二次方程两边相等的未知数的值,叫做一元二次方程的解)板书:一元二次方程的解也叫做这个方程的根.2.如何判定一个数值是不是一元二次方程的根
19、?(将这个数值代入一元二次方程,如果方程左右两边相等,则该数值是方程的根;如果方程左右两边不相等,则该数值不是方程的根)【课件展示】做一做:在下列各题中,括号内未知数的值,哪些是它前面方程的根?(1)x2-3x-4=0(x=0,x=-1,x=4);(2)(x+2)(x-2)=12(x=-1,x=-4,x=4);(3)2y2-y-1=0y=0,y=1,y=-12.【师生活动】学生独立完成并回答,教师点评.设计意图通过做一做让学生真正理解和掌握一元二次方程的根的概念.知识拓展1.判断一个方程是一元二次方程需同时满足三个条件:(1)是整式方程;(2)只含有一个未知数;(3)未知数的最高次数是2.同时
20、要注意二次项系数不能为0.2.一元二次方程的一般形式的特点是方程的右边为0,左边是关于未知数的二次整式.3.一元二次方程的项或系数是针对一元二次方程的一般形式而言的,所以写项或系数时,要先化成一般形式,并且都包括前边的符号.4.判断一个数值是不是一元二次方程的根的方法:将这个数值代入一元二次方程,如果方程左右两边相等,则该数值是方程的根;如果方程左右两边不相等,则该数值不是方程的根.5.如果已知a是一元二次方程的根,把x=a代入方程,方程左右两边相等,可以求待定系数的值,整体思想是常用的数学思想.1.一元二次方程概念需要满足三个条件:(1)是整式方程;(2)只含有一个未知数;(3)未知数的最高
21、次数是2.2.一元二次方程的一般形式是ax2+bx+c=0(a0),易错点是忽略强调a0.3.确定一元二次方程的项与系数时一定先化成一般形式,书写时应注意包括前边的符号.4.一元二次方程的解也叫一元二次方程的根.5.根据实际问题列一元二次方程的关键是读懂题意,找到题目中的等量关系.6.本节课用到了类比思想、整体思想解决数学问题.1.在下列方程中,一元二次方程的个数是()2x2+5=0;ax2+bx+c=0;(x-1)(x+2)=x2-1;3x2-2=0;2x2-1=x.A.2个B.3个C.4个D.5个解析:一元二次方程必须满足三个条件:(1)含有一个未知数;(2)未知数的最高次数是2;(3)是
22、整式方程,同时注意二次项系数不为0.满足条件,中二次项系数可能为0,化简后不含有二次项,不符合定义.故选B.2.一元二次方程7x2-2x=0的二次项、一次项、常数项依次是()A.7x2,2x,0B.7x2,-2x,无常数项C.7x2,0,2xD.7x2,-2x,0解析:一元二次方程ax2+bx+c=0(a0)中ax2是二次项,bx是一次项,c是常数项.所以该方程中二次项、一次项、常数项依次是7x2,-2x,0.故选D.3.已知x=2是一元二次方程x2+mx+2=0的一个解,则m的值是()A.-3B.3C.0D.0或3解析:把x=2代入方程,得4+2m+2=0,解得m=-3.故选A.4.若(m-
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第24章 一元二次方程 冀教版九年级数学上册第24章 一元二次方程教案 冀教版 九年级 数学 上册 24 一元 二次方程 教案
链接地址:https://www.77wenku.com/p-217510.html