2022年江苏省中考数学真题分类汇编8:图形的性质解答题(含答案解析)
《2022年江苏省中考数学真题分类汇编8:图形的性质解答题(含答案解析)》由会员分享,可在线阅读,更多相关《2022年江苏省中考数学真题分类汇编8:图形的性质解答题(含答案解析)(44页珍藏版)》请在七七文库上搜索。
1、2022年江苏省中考真题分类汇编8:图形的性质一、解答题1(2022江苏宿迁)如图,在网格中,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点、均为格点【操作探究】在数学活动课上,佳佳同学在如图的网格中,用无刻度的直尺画了两条互相垂直的线段、,相交于点并给出部分说理过程,请你补充完整:解:在网格中取格点,构建两个直角三角形,分别是ABC和CDE在RtABC中,在RtCDE中, ,所以所以=因为 = =90,所以 + =90,所以 =90,即(1)【拓展应用】如图是以格点为圆心,为直径的圆,请你只用无刻度的直尺,在上找出一点P,使=,写出作法,并给出证明:(2)【拓展应用】如图是以格点为
2、圆心的圆,请你只用无刻度的直尺,在弦上找出一点P使=,写出作法,不用证明2(2022江苏常州)(现有若干张相同的半圆形纸片,点是圆心,直径的长是,是半圆弧上的一点(点与点、不重合),连接、(1)沿、剪下,则是_三角形(填“锐角”、“直角”或“钝角”);(2)分别取半圆弧上的点、和直径上的点、已知剪下的由这四个点顺次连接构成的四边形是一个边长为的菱形请用直尺和圆规在图中作出一个符合条件的菱形(保留作图痕迹,不要求写作法);(3)经过数次探索,小明猜想,对于半圆弧上的任意一点,一定存在线段上的点、线段上的点和直径上的点、,使得由这四个点顺次连接构成的四边形是一个边长为的菱形小明的猜想是否正确?请说
3、明理由3(2022江苏常州)如图,点在射线上,如果绕点按逆时针方向旋转到,那么点的位置可以用表示(1)按上述表示方法,若,则点的位置可以表示为_;(2)在(1)的条件下,已知点的位置用表示,连接、求证:4(2022江苏常州)在四边形中,是边上的一点若,则点叫做该四边形的“等形点”(1)正方形_“等形点”(填“存在”或“不存在”);(2)如图,在四边形中,边上的点是四边形的“等形点”已知,连接,求的长;(3)在四边形中,EH/FG若边上的点是四边形的“等形点”,求的值5(2022江苏宿迁)如图,在平行四边形中,点,分别是边,的中点求证:6(2022江苏泰州)如图,线段DE与AF分别为ABC的中位
4、线与中线(1)求证:AF与DE互相平分;(2)当线段AF与BC满足怎样的数量关系时,四边形ADFE为矩形?请说明理由7(2022江苏泰州)已知:ABC中,D 为BC边上的一点.(1)如图,过点D作DEAB交AC边于点E,若AB=5,BD=9,DC=6,求DE的长;(2)在图,用无刻度的直尺和圆规在AC边上做点F,使DFA=A;(保留作图痕迹,不要求写作法)(3)如图,点F在AC边上,连接BF、DF,若DFA=A,FBC的面积等于,以FD为半径作F,试判断直线BC与F的位置关系,并说明理由.8(2022江苏泰州)如图,矩形ABCD与以EF为直径的半圆O在直线l的上方,线段AB与点E、F都在直线l
5、上,且AB=7,EF=10,BC5. 点B以1个单位/秒的速度从点E处出发,沿射线EF方向运动矩形ABCD随之运动,运动时间为t秒(1)如图2,当t=2.5时,求半圆O在矩形ABCD内的弧的长度;(2)在点B运动的过程中,当 AD、BC都与半圆O相交,设这两个交点为G、H连接OG,OH.若GOH为直角,求此时t的值.9(2022江苏无锡)如图,ABC为锐角三角形(1)请在图1中用无刻度的直尺和圆规作图:在AC右上方确定点D,使DACACB,且;(不写作法,保留作图痕迹)(2)在(1)的条件下,若,则四边形ABCD的面积为 (如需画草图,请使用试卷中的图2)10(2022江苏无锡)如图,已知四边
6、形ABCD为矩形,点E在BC上,将ABC沿AC翻折到AFC,连接EF(1)求EF的长;(2)求sinCEF的值11(2022江苏无锡)如图,边长为6的等边三角形ABC内接于O,点D为AC上的动点(点A、C除外),BD的延长线交O于点E,连接CE(1)求证;(2)当时,求CE的长12(2022江苏无锡)如图,在ABCD中,点O为对角线BD的中点,EF过点O且分别交AB、DC于点E、F,连接DE、BF求证:(1)DOFBOE;(2)DE=BF13(2022江苏扬州)如图1,在中,点在边上由点向点运动(不与点重合),过点作,交射线于点(1)分别探索以下两种特殊情形时线段与的数量关系,并说明理由;点在
7、线段的延长线上且;点在线段上且(2)若当时,求的长;直接写出运动过程中线段长度的最小值14(2022江苏扬州)如图,为的弦,交于点,交过点的直线于点,且(1)试判断直线与的位置关系,并说明理由;(2)若,求的长15(2022江苏宿迁)如图,某学习小组在教学楼的顶部观测信号塔底部的俯角为30,信号塔顶部的仰角为45已知教学楼的高度为20m,求信号塔的高度(计算结果保冒根号)16(2022江苏扬州)如图,在中,分别平分,交于点(1)求证:;(2)过点作,垂足为若的周长为56,求的面积17(2022江苏苏州)如图,AB是的直径,AC是弦,D是的中点,CD与AB交于点EF是AB延长线上的一点,且(1)
8、求证:为的切线;(2)连接BD,取BD的中点G,连接AG若,求AG的长18(2022江苏苏州)如图,将矩形ABCD沿对角线AC折叠,点B的对应点为E,AE与CD交于点F(1)求证:;(2)若,求的度数19(2022江苏宿迁)如图,在中, =45,以为直径的与边交于点(1)判断直线与的位置关系,并说明理由;(2)若,求图中阴影部分的面积20(2022江苏扬州)【问题提出】如何用圆规和无刻度的直尺作一条直线或圆弧平分已知扇形的面积?【初步尝试】如图1,已知扇形,请你用圆规和无刻度的直尺过圆心作一条直线,使扇形的面积被这条直线平分;【问题联想】如图2,已知线段,请你用圆规和无刻度的直尺作一个以为斜边
9、的等腰直角三角形;【问题再解】如图3,已知扇形,请你用圆规和无刻度的直尺作一条以点为圆心的圆弧,使扇形的面积被这条圆弧平分(友情提醒:以上作图均不写作法,但需保留作图痕迹)21(2022江苏连云港)【问题情境】在一次数学兴趣小组活动中,小昕同学将一大一小两个三角板按照如图1所示的方式摆放其中,【问题探究】小昕同学将三角板绕点B按顺时针方向旋转(1)如图2,当点落在边上时,延长交于点,求的长(2)若点、在同一条直线上,求点到直线的距离(3)连接,取的中点,三角板由初始位置(图1),旋转到点、首次在同一条直线上(如图3),求点所经过的路径长(4)如图4,为的中点,则在旋转过程中,点到直线的距离的最
10、大值是_22(2022江苏连云港)如图,四边形为平行四边形,延长到点,使,且(1)求证:四边形为菱形;(2)若是边长为2的等边三角形,点、分别在线段、上运动,求的最小值参考答案1(1);见解析(2)见解析【解析】【分析】(1)取格点,作射线交于点P,则根据垂径定理可知,点P即为所求作;(2)取格点I,连接MI交AB于点P,点P即为所求作利用正切函数证得FMI=MNA,利用圆周角定理证得B=MNA,再推出PAMMAB,即可证明结论(1)解:【操作探究】在网格中取格点,构建两个直角三角形,分别是ABC和CDE在RtABC中,在RtCDE中,所以所以=因为 = =90,所以 + =90,所以 =90
11、,即故答案为:;取格点,作射线交于点P,点P即为所求作;(2)解:取格点I,连接MI交AB于点P,点P即为所求作;证明:作直径AN,连接BM、MN,在RtFMI中,在RtMNA中,所以FMI=MNA,B=MNA,AMP=B,PAM=MAB,PAMMAB, ,=【点睛】本题考查作图-应用与设计,相似三角形的判定和性质,圆周角定理,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题2(1)直角(2)见详解(3)小明的猜想错误,理由见详解【解析】【分析】(1)AB是圆的直径,根据圆周角定理可知ACB=90,即可作答;(2)以A为圆心,AO为半径画弧交O于点E,再以E为圆心,EO为半径
12、画弧交于O点F连接EF、FO、EA,G、H点分别与A、O点重合,即可;(3)过C点作,交AB于点G,连接CO,根据,可得,即有,则可求得,依据,NQ=4,可得GC=OC=6,即可判断(1)如图,AB是O的直径,ACB=90,ACB是直角,即ABC是直角三角形,故答案为:直角,(2)以A为圆心,AO为半径画弧交O于点E,再以E为圆心,EO为半径画弧交于O点F连接EF、FO、EA,G、H点分别与A、O点重合,即可,作图如下:由作图可知AE=EF=FH=HG=OA=AB=6,即四边形EFHG是边长为6cm的菱形;(3)小明的猜想错误,理由如下:如图,菱形MNQP的边长为4,过C点作,交AB于点G,连
13、接CO,在菱形MNQP中MN=QN=4,AB=12,MN=4,BN=BC-CN,NQ=4,GC=6,AB=12,OC=6,OC=GC,显然若C点靠近A点时,要满足GC=OC=6,此时的G点必在BA的延长线上,P点在线段AB上,直线GC必与直线PM相交,这与相矛盾,故小明的猜想错误【点睛】本题考查了圆周角定理、尺规作图、菱形的性质、平行的性质等知识,掌握菱形的性质以及平行的性质求得GC=OC是解答本题的关键3(1)(3,37)(2)见解析【解析】【分析】(1)根据点的位置定义,即可得出答案;(2)画出图形,证明AOABOA(SAS),即可由全等三角形的性质,得出结论(1)解:由题意,得A(a,n
14、),a=3,n=37,A(3,37),故答案为:(3,37);(2)证明:如图,B(3,74),AOA=37,AOB=74,OA= OB=3,AOB=AOB-AOA=74-37=37,OA=OA,AOABOA(SAS),AA=AB【点睛】本题考查全等三角形的判定与性质,新定义,旋转的性质,熟练掌握全等三角形的判定与性质是解题的关键4(1)不存在,理由见详解(2)(3)1【解析】【分析】(1)根据“等形点”的概念,采用反证法即可判断;(2)过A点作AMBC于点M,根据“等形点”的性质可得AB=CD=,OA=OC=5,OB=7=OD,设MO=a,则BM=BO-MO=7-a,在RtABM和RtAOM
15、中,利用勾股定理即可求出AM,则在RtAMC中利用勾股定理即可求出AC;(3)根据“等形点”的性质可得OF=OH,OE=OG,EOF=GOH,再根据,可得EOF=OEH,GOH=EHO,即有OEH=OHE,进而有OE=OH,可得OF=OG,则问题得解(1)不存在,理由如下:假设正方形ABCD存在“等形点”点O,即存在OABOCD,在正方形ABCD中,点O在边BC上,ABO=90,OABOCD,ABO=CDO=90,CDDO,CDBC,O点在BC上,DO与BC交于点O,假设不成立,故正方形不存在“等形点”;(2)如图,过A点作AMBC于点M,如图,O点是四边形ABCD的“等形点”,OABOCD,
16、AB=CD,OA=OC,OB=OD,AOB=COD,OA=5,BC=12,AB=CD=,OA=OC=5,OB=BC-OC=12-5=7=OD,AMBC,AMO=90=AMB,设MO=a,则BM=BO-MO=7-a,在RtABM和RtAOM中,即,解得:,即,MC=MO+OC=,在RtAMC中,即AC的长为;(3)如图,O点是四边形EFGH的“等形点”,OEFOGH,OF=OH,OE=OG,EOF=GOH,EOF=OEH,GOH=EHO,根据EOF=GOH有OEH=OHE,OE=OH,OF=OH,OE=OG,OF=OG,【点睛】本题考查了全等三角形的性质、勾股定理、正方形的性质、平行的性质等知识
17、,充分利用全等三角形的性质是解答本题的关键5证明见解析【解析】【分析】利用是平行四边形,得到,再证明,即可证明是平行四边形,利用平行四边形的性质即可得到【详解】证明:是平行四边形,点,分别是边,的中点,是平行四边形,【点睛】本题考查平行四边形的判定及性质,解题的关键是证明是平行四边形6(1)见解析(2)AF=BC,理由见解析【解析】【分析】(1)易知点D,E,F分别是AB,AC,BC的中点,所以线段DF与EF也为ABC的中位线,由中位线定理证得四边形ADFE是平行四边形,因为平行四边形的对角线相互平分,此题可证;(2)根据对角线相等的平行四边形是矩形,结合已知条件可知,当AF=BC时,平行四边
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 江苏省 中考 数学 分类 汇编 图形 性质 解答 答案 解析
链接地址:https://www.77wenku.com/p-217558.html