第24章圆 单元测试卷(含答案解析)2022-2023学年人教版九年级数学上册
《第24章圆 单元测试卷(含答案解析)2022-2023学年人教版九年级数学上册》由会员分享,可在线阅读,更多相关《第24章圆 单元测试卷(含答案解析)2022-2023学年人教版九年级数学上册(31页珍藏版)》请在七七文库上搜索。
1、第二十四章 圆一、单选题1如图1,一个扇形纸片的圆心角为90,半径为6如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A6B69C12D2如图,O的半径为5cm,直线l到点O的距离OM=3cm,点A在l上,AM=3.8cm,则点A与O的位置关系是()A在O内B在O上C在O外D以上都有可能3以原点O为圆心的圆交x轴于A、B两点,交y轴的正半轴于点C,D为第一象限内O上的一点,若DAB25,则OCD()A50B40C70D304如图,ABC内接于O,A50E是边BC的中点,连接OE并延长,交O于点D,连接BD,则D的大小为()A55B65C6
2、0D755如图,在等腰RtABC中,ACBC,点P在以斜边AB为直径的半圆上,M为PC的中点当点P沿半圆从点A运动至点B时,点M运动的路径长是()ABCD26如图,点A,B的坐标分别为,点C为坐标平面内一点,点M为线段的中点,连接,则的最大值为( )ABCD7如图,O是RtABC的外接圆,ACB90,过点C作O的切线,交AB的延长线于点D设A,D,则()AB+90C2+90D+2908如图物体由两个圆锥组成,其主视图中,若上面圆锥的侧面积为1,则下面圆锥的侧面积为()A2BCD9下列说法正确的是()近似数精确到十分位;在,中,最小的是;如图所示,在数轴上点所表示的数为;用反证法证明命题“一个三
3、角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”;如图,在内一点到这三条边的距离相等,则点是三个角平分线的交点A1B2C3D410如图,在中,以点为圆心,为半径的圆与所在直线的位置关系是()A相交B相离C相切D无法判断二、填空题11如图,抛物线的图象与坐标轴交于点、,顶点为,以为直径画半圆交轴的正半轴于点,圆心为,是半圆上的一动点,连接,是的中点,当沿半圆从点运动至点时,点运动的路径长是_12如图,AB为圆O的切线,点A为切点,OB交圆O于点C,点D在圆O上,连接AD、CD、OA,若ADC=25,则B的度数为_13如图,正八边形ABCDEFGH内接于O,点P是上的任意一点,则CPE
4、的度数为_14如图,四边形内接于,若,则_ 15如图,在中,的半径为点是边上的动点,过点作的一条切线(其中点为切点),则线段长度的最小值为_16如图 1 是台湾某品牌手工蛋卷的外包装盒,其截面图如图 2 所示,盒子上方是一段圆弧(弧 MN ).D,E 为手提带的固定点, DE 与弧MN 所在的圆相切,DE=2.手提带自然下垂时,最低点为C,且呈抛物线形,抛物线与弧MN 交于点 F,G.若CDE 是等腰直角三角形,且点 C,F 到盒子底部 AB 的距离分别为 1, ,则弧MN 所在的圆的半径为_ 17圆锥形冰淇淋的母线长是12cm,侧面积是60cm2,则底面圆的半径长等于_三、解答题18如图已知
5、抛物线的图象与轴交于、两点(在的左侧),与的正半轴交于点,连结;二次函数的对称轴与轴的交点.(1)抛物线的对称轴与轴的交点坐标为,点的坐标为_(2)若以为圆心的圆与轴和直线都相切,试求出抛物线的解析式:(3)在(2)的条件下,如图是的正半轴上一点,过点作轴的平行线,与直线交于点与抛物线交于点,连结,将沿翻折,的对应点为,在图中探究:是否存在点,使得恰好落在轴上?若存在,请求出的坐标:若不存在,请说明理由.19如图,在ABC中,ABAC,以AB为直径的O交BC于点D,延长CA交O于点E连接ED交AB于点F(1)求证:CDE是等腰三角形(2)当CD:AC2:时,求的值20(1)如图,在ABC中,A
6、B=4,AC=3,若AD平分BAC交于点,那么点到的距离为 (2)如图,四边形内接于,为直径,点B是半圆的三等分点(弧弧),连接,若平分,且,求四边形的面积(3)如图,为把“十四运”办成一届精彩圆满的体育盛会很多公园都在进行花卉装扮,其中一块圆形场地圆O,设计人员准备在内接四边形ABCD区域内进行花卉图案设计,其余部分方便游客参观,按照设计要求,四边形ABCD满足ABC=60,AB=AD,且AD+DC=10(其中 ),为让游客有更好的观体验,四边形ABCD花卉的区域面积越大越好,那么是否存在面积最大的四边形ABCD?若存在,求出这个最大值,不存在请说明理由21如图,两个圆都以点O为圆心,大圆的
7、弦交小圆于两点求证: 22如图,已知为半圆O的直径,P为半圆上的一个动点(不含端点),以为一组邻边作,连接,设的中点分别为,连接(1)试判断四边形的形状,并说明理由(2)若点P从点B出发,以每秒的速度,绕点O在半圆上逆时针方向运动,设运动时间为是否存在这样的,使得点Q落在半圆O内?若存在,请求出的取值范围;若不存在,请说明理由试求:当t为何值时,四边形的面积取得最大值?并判断此时直线与半圆O的位置关系(需说明理由)23如图,是的直径,点是上一点,点是延长线上一点,是的弦,(1)求证:直线是的切线;(2)若,求的半径;(3)若于点,点为上一点,连接,请找出,之间的关系,并证明参考答案1A【解析】
8、【分析】连接OD,如图,利用折叠性质得由弧AD、线段AC和CD所围成的图形的面积等于阴影部分的面积,AC=OC,则OD=2OC=6,CD=3,从而得到CDO=30,COD=60,然后根据扇形面积公式,利用由弧AD、线段AC和CD所围成的图形的面积=S扇形AOD-SCOD,进行计算即可【详解】解:连接OD,如图,扇形纸片折叠,使点A与点O恰好重合,折痕为CD,ACOC,OD2OC6,CD,CDO30,COD60,由弧AD、线段AC和CD所围成的图形的面积S扇形AODSCOD6,阴影部分的面积为6.故选A【点睛】本题考查了扇形面积的计算:阴影面积的主要思路是将不规则图形面积转化为规则图形的面积记住
9、扇形面积的计算公式也考查了折叠性质2A【解析】【详解】如图,连接OA,则在直角OMA中,根据勾股定理得到OA=点A与O的位置关系是:点A在O内 故选A 3C【解析】【分析】根据圆周角定理求出DOB,根据等腰三角形性质求出OCD=ODC,根据三角形内角和定理求出即可【详解】解:连接OD,DAB=25,BOD=2DAB=50,COD=90-50=40,OC=OD,OCD=ODC=(180-COD)=70,故选:C【点睛】本题考查了圆周角定理,等腰三角形性质,三角形内角和定理的应用,主要考查学生的推理能力,题目比较典型,难度适中4B【解析】【分析】连接CD,根据圆内接四边形的性质得到CDB180A1
10、30,根据垂径定理得到ODBC,求得BDCD,根据等腰三角形的性质即可得到结论【详解】解:连接CD,A50,CDB180A130,E是边BC的中点,ODBC,BDCD,ODBODCBDC65,故选:B【点睛】本题考查了圆内接四边形的性质,垂径定理,等腰三角形的性质等知识正确理解题意是解题的关键5B【解析】【分析】取AB的中点O、AC的中点E、BC的中点F,连接OC、OP、OM、OE、OF、EF,如图,利用勾股定理得到AB的长,进而可求出OC,OP的长,求得CMO=90,于是得到点M在以OC为直径的圆上,然后根据圆的周长公式计算点M运动的路径长【详解】解:取AB的中点O、AC的中点E、BC的中点
11、F,连接OC、OP、OM、OE、OF、EF,如图,在等腰RtABC中,AC=BC=2,AB=BC=4,OC=OP=AB=2,ACB=90,C在O上,M为PC的中点,OMPC,CMO=90,点M在以OC为直径的圆上,P点在A点时,M点在E点;P点在B点时,M点在F点O是AB中点,E是AC中点,OE是ABC的中位线,OE/BC,OE=BC=,OEAC,同理OFBC,OF=,四边形CEOF是矩形,OE=OF,四边形CEOF为正方形,EF=OC=2,M点的路径为以EF为直径的半圆,点M运动的路径长=2=故选:B【点睛】本题考查了等腰三角形的性质,勾股定理,正方形的判定与性质,圆周角定理,以及动点的轨迹
12、:点按一定规律运动所形成的图形为点运动的轨迹解决此题的关键是利用圆周角定理确定M点的轨迹为以EF为直径的半圆6B【解析】【分析】如图所示,取AB的中点N,连接ON,MN,根据三角形的三边关系可知OMON+MN,则当ON与MN共线时,OM= ON+MN最大,再根据等腰直角三角形的性质以及三角形的中位线即可解答【详解】解:如图所示,取AB的中点N,连接ON,MN,三角形的三边关系可知OMON+MN,则当ON与MN共线时,OM= ON+MN最大,则ABO为等腰直角三角形,AB=,N为AB的中点,ON=,又M为AC的中点,MN为ABC的中位线,BC=1,则MN=,OM=ON+MN=,OM的最大值为故答
13、案选:B【点睛】本题考查了等腰直角三角形的性质以及三角形中位线的性质,解题的关键是确定当ON与MN共线时,OM= ON+MN最大7C【解析】【分析】连接OC, 由BOC是AOC的外角,可得BOC2A2,由CD是O的切线,可求OCD90,可得D902即可【详解】连接OC,如图,O是RtABC的外接圆,ACB90,AB是直径,A,OA=OC,BOC是AOC的外角,A=ACO,BOC=A+ACO2A2,CD是O的切线,OCCD,OCD90,D90BOC902,2+90故选:C【点睛】本题考查圆的半径相等,三角形外角性质,切线性质,直角三角形两锐角互余性质,掌握圆的半径相等,三角形外角性质,切线性质,
14、直角三角形两锐角互余性质8D【解析】【分析】先证明ABD为等腰直角三角形得到ABD45,BDAB,再证明CBD为等边三角形得到BCBDAB,利用圆锥的侧面积的计算方法得到上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,从而得到下面圆锥的侧面积【详解】A90,ABAD,ABD为等腰直角三角形,ABD45,BDAB,ABC105,CBD60,而CBCD,CBD为等边三角形,BCBDAB,上面圆锥与下面圆锥的底面相同,上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,下面圆锥的侧面积1故选D【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径
15、等于圆锥的母线长也考查了等腰直角三角形和等边三角形的性质9B【解析】【分析】根据近似数的精确度定义,可判断;根据实数的大小比较,可判断;根据点在数轴上所对应的实数,即可判断;根据反证法的概念,可判断;根据角平分线的性质,可判断【详解】近似数精确到十位,故本小题错误;,最小的是,故本小题正确;在数轴上点所表示的数为,故本小题错误;用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角或三个钝角”,故本小题错误;在内一点到这三条边的距离相等,则点是三个角平分线的交点,故本小题正确故选B【点睛】本题主要考查近似数的精确度定义,实数的大小比较,点在数轴上所对应的实数,反证法
16、的概念,角平分线的性质,熟练掌握上述知识点,是解题的关键10A【解析】【分析】过点C作CDAB于点D,由题意易得AB=5,然后可得,进而根据直线与圆的位置关系可求解【详解】解:过点C作CDAB于点D,如图所示:,根据等积法可得,以点为圆心,为半径的圆,该圆的半径为,圆与AB所在的直线的位置关系为相交,故选A【点睛】本题主要考查直线与圆的位置关系,熟练掌握直线与圆的位置关系是解题的关键11【解析】【分析】先求出A、B、E的坐标,然后求出半圆的直径为4,由于E为定点,P是半圆AB上的动点,N为EP的中点,所以N的运动路经为直径为2的半圆,计算即可.【详解】解:,点E的坐标为(1,-2),令y=0,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第24章圆 单元测试卷含答案解析2022-2023学年人教版九年级数学上册 24 章圆 单元测试 答案 解析 2022 2023 学年 人教版 九年级 数学 上册
链接地址:https://www.77wenku.com/p-217665.html