第22章 二次函数 单元测试卷(含答案解析)2022-2023学年人教版九年级数学上册
《第22章 二次函数 单元测试卷(含答案解析)2022-2023学年人教版九年级数学上册》由会员分享,可在线阅读,更多相关《第22章 二次函数 单元测试卷(含答案解析)2022-2023学年人教版九年级数学上册(25页珍藏版)》请在七七文库上搜索。
1、第二十二章二次函数一、单选题1小明在研究抛物线(h为常数)时,得到如下结论,其中正确的是()A无论x取何实数,y的值都小于0B该抛物线的顶点始终在直线上C当时,y随x的增大而增大,则D该抛物线上有两点,若,则22019年女排世界杯于9月在日本举行,中国女排以十一连胜的骄人成绩卫冕冠军,充分展现了团队协作、顽强拼搏的女排精神如图是某次比赛中垫球时的动作,若将垫球后排球的运动路线近似的看作拋物线,在同一竖直平面内建立如图所示的直角坐标系,已知运动员垫球时(图中点A)离球网的水平距离为5米,排球与地面的垂直距离为0.5米,排球在球网上端0.26米处(图中点B)越过球网(女子排球赛中球网上端距地面的高
2、度为2.24米),落地时(图中点)距球网的水平距离为2.5米,则排球运动路线的函数表达式为() A BCD3下列各式中表示二次函数的是()Ayx2+By2x2CyDy(x1)2x24二次函数 的图像如图所示, 现有以下结论: (1) : (2) ; (3), (4) ; (5) ; 其中正确的结论有()A2 个B3 个C4 个D5 个5当0x3,函数yx2+4x+5的最大值与最小值分别是()A9,5B8,5C9,8D8,46二次函数的顶点坐标为,图象如图所示,有下列四个结论:;,其中结论正确的个数为()A个B个C个D个7已知二次函数y = ax2 + bx + c(a0)的图象如图所示,则下列
3、结论:4a + 2b + c 0;y随x的增大而增大;方程ax2 + bx + c = 0两根之和小于零;一次函数y = ax + bc的图象一定不过第二象限,其中正确的个数是()A4个B3个C2个D1个8在平面直角坐标系中,将二次函数的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线对应的函数表达式为()ABCD9把抛物线的图象向左平移1个单位,再向上平移2个单位,所得的抛物线的函数关系式是()ABCD10函数yax与yax2+a(a0)在同一直角坐标系中的大致图象可能是()ABCD二、填空题11二次函数y=ax2+bx+c(a0)图象上部分点的坐标(x,y)对应值列表如下:x-
4、3-2-101y-4-3-4-7-12则该图象的对称轴是_12小亮同学在探究一元二次方程的近似解时,填好了下面的表格:根据以上信息请你确定方程的一个解的范围是_13二次函数yax2+bx+c图象上部分点的横坐标x与纵坐标y的对应值如表格所示,那么它的图象与x轴的另一个交点坐标是_14某快餐店销售A、B两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份该店为了增加利润,准备降低每份A种快餐的利润,同时提高每份B种快餐的利润售卖时发现,在一定范围内,每份A种快餐利润每降1元可多卖2份,每份B种快餐利润每提高1元就少卖2份如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利
5、润最多是_元15如图,在平面直角坐标系中,点A在抛物线yx22x2上运动过点A作ACx轴于点C,以AC为对角线作矩形ABCD,连接BD,则对角线BD的最小值为_16我们用符号表示不大于的最大整数例如:,那么:(1)当时,的取值范围是_;(2)当时,函数的图象始终在函数的图象下方则实数的范围是_17将二次函数化成一般形式,其中二次项系数为_,一次项系数为_,常数项为_三、解答题18已知关于的二次函数(1)求证:不论为何实数,该二次函数的图象与轴总有两个公共点;(2)若,两点在该二次函数的图象上,直接写出与的大小关系;(3)若将抛物线沿轴翻折得到新抛物线,当时,新抛物线对应的函数有最小值3,求的值
6、19如图1,抛物线y=ax2+bx+3交x轴于点A(1,0)和点B(3,0)(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上求四边形ACFD的面积;点P是线段AB上的动点(点P不与点A、B重合),过点P作PQx轴交该抛物线于点Q,连接AQ、DQ,当AQD是直角三角形时,求出所有满足条件的点Q的坐标20已知抛物线c:y=x22x3和直线l:y=xd。将抛物线c在x轴上方的部分沿x轴翻折180,其余部分保持不变,翻折后的图象与x轴下方的部分组成一个“M”型的新图象(即新函数m:y=|x22x3|的图象)。(1)当直线l与这个新图象有且只
7、有一个公共点时,d= ;(2)当直线l与这个新图象有且只有三个公共点时,求d的值;(3)当直线l与这个新图象有且只有两个公共点时,求d的取值范围;(4)当直线l与这个新图象有四个公共点时,直接写出d的取值范围21如图,二次函数的图象交轴于、两点,交轴于点,点的坐标为,顶点的坐标为求二次函数的解析式和直线的解析式;点是直线上的一个动点,过点作轴的垂线,交抛物线于点,当点在第一象限时,求线段长度的最大值;在抛物线上是否存在异于、的点,使中边上的高为?若存在求出点的坐标;若不存在请说明理由22在平面直角坐标系中,抛物线的顶点为P,且与y轴交于点A,与直线交于点B,C(点B在点C的左侧).(1)求抛物
8、线的顶点P的坐标(用含a的代数式表示);(2)横、纵坐标都是整数的点叫做整点,记抛物线与线段AC围成的封闭区域(不含边界)为“W区域”.当时,请直接写出“W区域”内的整点个数;当“W区域”内恰有2个整点时,结合函数图象,直接写出a的取值范围.23每年九月开学前后是文具盒的销售旺季,商场专门设置了文具盒专柜李经理记录了天的销售数量和销售单价,其中销售单价(元/个)与时间第天(为整数)的数量关系如图所示,日销量(个)与时间第天(为整数)的函数关系式为: 直接写出与的函数关系式,并注明自变量的取值范围;设日销售额为(元) ,求(元)关于(天)的函数解析式;在这天中,哪一天销售额(元)达到最大,最大销
9、售额是多少元;由于需要进货成本和人员工资等各种开支,如果每天的营业额低于元,文具盒专柜将亏损,直接写出哪几天文具盒专柜处于亏损状态参考答案1C【解析】【分析】根据二次函数的对称轴、二次函数图象上点的坐标特征、二次函数的性质,判断即可【详解】解:A,当时,当时, ,故错误;B抛物线的顶点坐标为,当时,故错误;C抛物线开口向下,当时,y随x的增大而增大,故正确;D抛物线上有两点,若,点A到对称轴的距离大于点B到对称轴的距离,故错误故选C【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键2A【解析】【分析】由题意可知点A坐标为(-5,0.5),点B坐标为
10、(0,2.5),点C坐标为(2.5,0),设排球运动路线的函数表达式为:y=ax2+bx+c,将点A、B、C的坐标代入得关于a、b、c的三元一次方程组,解得a、b、c的值,则函数解析式可得,从而问题得解【详解】解:由题意可知点A坐标为(-5,0.5),点B坐标为(0,2.5),点C坐标为(2.5,0)设排球运动路线的函数解析式为:y=ax2+bx+c,排球经过A、B、C三点,解得: ,排球运动路线的函数解析式为,故选:A【点睛】本题考查了根据实际问题列二次函数关系式并求得关系式,数形结合并明确二次函数的一般式是解题的关键3B【解析】【分析】利用二次函数的定义逐项判断即可【详解】解:A、yx2+
11、,含有分式,不是二次函数,故此选项错误;B、y2x2,是二次函数,故此选项正确;C、y,含有分式,不是二次函数,故此选项错误;D、y(x1)2x22x+1,是一次函数,故此选项错误故选:B【点睛】本题考查了二次函数的概念,属于应知应会题型,熟知二次函数的定义是解题关键4C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断【详解】解:(1)函数开口向下,a0,对称轴在y轴的右边,b0,故命题正确;(2)a0,b0,c0,abc0,故命题正确;(3)当x=-1时,y0,a-b+c0,故命题错
12、误;(4)当x=1时,y0,a+b+c0,故命题正确;(5)抛物线与x轴于两个交点,b2-4ac0,故命题正确;故选C【点睛】本题考查了二次函数图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用5A【解析】【分析】利用配方法把原方程化为顶点式,再根据二次函数的性质即可解答【详解】yx2+4x+5x2+4x4+4+5(x2)2+9,当x2时,最大值是9,0x3,x0时,最小值是5,故选:A【点睛】本题考查二次函数的最值,掌握二次函数的性质与利用配方法将一般式改为顶点式是解答本题的关键6A【解析】【分析】根据二次函数的性质和已知条件
13、,对每一项逐一进行判断即可【详解】解:由图像可知a0,c0,对称轴在正半轴,0,b0,故正确;当x=2时,y0,故,故正确;函数解析式为:y=a(x-1)2+2=ax2-2ax+a+2假设成立,结合解析式则有a+2,解得a,故,正确;故选:A【点睛】本题考查了二次函数图象与系数的关系,结合图象,运用所学知识是解题关键7D【解析】【分析】根据函数的图象可知x=2时,函数值的正负性;并且可知与x轴有两个交点,即对应方程有两个实数根;函数的增减性需要找到其对称轴才知具体情况;由函数的图象还可知b、c的正负性,一次函数y=ax+bc所经过的象限进而可知正确选项【详解】当x=2时,y=4a+2b+c,对
14、应的y值为正,即4a+2b+c0,故正确;因为抛物线开口向上,在对称轴左侧,y随x的增大而减小;在对称轴右侧,y随x的增大而增大,故错误;由二次函数y=ax2+bx+c(a0)的图象可知:函数图象与x轴有两个不同的交点,即对应方程有两个不相等的实数根,且正根的绝对值较大,方程ax2+bx+c=0两根之和大于零,故错误;由图象开口向上,知a0,与y轴交于负半轴,知c0,由对称轴,知b0,bc0,一次函数y=ax+bc的图象一定经过第二象限,故错误;综上,正确的个数为1个,故选:D【点睛】本题考查了二次函数的图象与系数的关系以及一次函数的图象,利用了数形结合的思想,此类题涉及的知识面比较广,能正确
15、观察图象是解本题的关键8B【解析】【分析】先求出平移后抛物线的顶点坐标,进而即可得到答案【详解】解:的顶点坐标为(0,0)将二次函数的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线的顶点坐标为(-2,1),所得抛物线对应的函数表达式为,故选B【点睛】本题主要考查二次函数的平移规律,找出平移后二次函数图像的顶点坐标或掌握“左加右减,上加下减”,是解题的关键9A【解析】【分析】求出原抛物线的顶点坐标,再根据向左平移横坐标减,向上平移纵坐标加求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可【详解】解:抛物线的顶点坐标为(2,1),向左平移1个单位,再向上平移2个单位后的顶点坐
16、标是(1,3)所得抛物线解析式是故选:A【点睛】本题考查了二次函数图象的平移,利用顶点的变化确定抛物线解析式的变化更简便10D【解析】【分析】先根据一次函数的性质确定a0与a0两种情况分类讨论抛物线的顶点位置即可得出结论【详解】解:函数yax与yax2+a(a0)A. 函数yax图形可得a0,则yax2+a(a0)开口方向向下正确,当顶点坐标为(0,a),应交于y轴负半轴,而不是交y轴正半轴,故选项A不正确;B. 函数yax图形可得a0,则yax2+a(a0)开口方向向下正确,当顶点坐标为(0,a),应交于y轴负半轴,而不是在坐标原点上,故选项B不正确;C. 函数yax图形可得a0,则yax2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第22章 二次函数 单元测试卷含答案解析2022-2023学年人教版九年级数学上册 22 二次 函数 单元测试 答案 解析 2022 2023 学年 人教版 九年级 数学 上册
链接地址:https://www.77wenku.com/p-217666.html