《冀教版七年级数学上册《第二章几何图形的初步认识》教案》由会员分享,可在线阅读,更多相关《冀教版七年级数学上册《第二章几何图形的初步认识》教案(113页珍藏版)》请在七七文库上搜索。
1、第二章 几何图形的初步认识1.通过对丰富的实物和实例的抽象,进一步认识几何图形,尤其是点、线段、射线、直线和角,并会表示它们.2.经历观察、测量、画图、折纸等活动,了解上述图形的有关性质,发展空间观念.3.会比较线段的长短和角的大小,能估计线段的长短和角的大小.4.认识角的度量单位,会进行角的换算.5.会计算线段和角的和与差,能使用直尺和圆规作线段和角.6.与角的认识相结合认识平面图形的旋转.7.了解一些数学基本事实,掌握相关的图形关系,增强空间观念和几何直观.1.通过各种几何图形的抽象过程和图形性质及图形关系的发现和确认,进一步发展学生的数学基本思想,并在这样的活动过程中,使学生积累数学活动
2、经验.2.通过本章的数学活动过程,培养学生发现问题、提出问题、分析问题、解决问题的能力.1.培养学生观察、操作、探究图形性质等合作意识.2.培养学生在发现问题、解决问题过程中的创新精神.本章的基本知识是:认识几何图形,了解线与角、线段与角的有关性质并学会计算,认识平面图形的旋转.本章的基本技能是:画一条线段等于已知线段,画出两条线段的和或差,作一个角等于已知角,作两个角的和或差,能进行角的度数和线段长度的计算.本章的基本数学思想是:几何图形生成过程中运用的抽象思想,图形关系发现和确认过程中运用的推理思想等.本章内容的呈现方式及特点:在本章,空间观念、几何直观、推理能力、应用意识和创新意识这些核
3、心概念的培养与发展,是教材设计的主导思想.加强发现和提出问题、分析和解决问题的能力的培养,是本章教材设计的又一重要指导思想.【重点】1.点、线段、射线、直线和角的有关性质.2.比较线段和角的大小,按照相关要求作简单的线段和角.【难点】1.角的定义和计算.2.利用直尺和圆规按要求作线段和角.1.现实中的几何实例与教学中的几何对象是具体和抽象、特殊和一般的关系,在实际教学中,如何引导学生从具体的实例中抽象出事物的一般性,是教学中的一个难点,这方面的处理是否得当直接关系到学生能否准确地理解数学中的各种几何概念.2.几何量的度量是几何中基础而重要的问题,是培养学生准确的几何观念的重要内容.教师通过让学
4、生使用直尺、三角板、量角器和圆规等常用的数学工具,培养学生严谨的科学态度和基本的使用工具的能力,对于学生在日常生活中使用其他工具解决实际问题也很有帮助.3.几何知识应该在几何的实际背景中讲授.本章内容包含了大量的生活实例,有利于学生克服数学中抽象而形式化的困难,对学生准确理解并掌握几何概念以及它们的一些简单性质十分有利.2.1从生活中认识几何图形1课时2.2点和线1课时2.3线段的长短1课时2.4线段的和与差1课时2.5角以及角的度量1课时2.6角的大小1课时2.7角的和与差1课时2.8平面图形的旋转1课时回顾与反思1课时2.1从生活中认识几何图形1.进一步认识常见的几何图形,并能用自己的语言
5、描述它们的特征.2.体会点、线、面是几何图形的基本要素.进一步经历几何图形的抽象过程.培养学生从具体到抽象的思想方法.【重点】从实物背景中得到几何图形的特征.【难点】在小学的基础上进一步增强对几何图形的抽象认识.【教师准备】多媒体课件.【学生准备】立体图形的实物.导入一:从北京天坛主体建筑物的外观上看,它是由不同形状和大小的几何体构成的吗?设计意图主题图是北京天坛的照片,它可以看作是由不同形状、不同大小、不同位置的几何体组成的.用此图导入可以比较好地帮助学生从生活中去认识几何图形的特征.导入二:物体的构成包含多种元素,几何图形也是如此.以长方体为例,我们来分析一下几何图形的构成元素.(1)观察
6、长方体模型,如图所示,它有几个面?面与面相交的地方形成了几条线?棱与棱相交形成了几个顶点?(2)拿出三棱柱模型让学生思考以上问题.(3)你能说出构成几何图形的元素包含哪些吗?学生思考交流,师生共同总结:几何图形的构成元素包括点、线、面.设计意图引导学生在已有知识的基础上,通过主动地观察、思考,体会几何图形是由点、线、面构成的,从构成元素的角度把握几何体的特征,从而引入点、线、面的概念.过渡语现实生活中的物体,它们的形状、大小及它们之间的位置关系,反映着它们本身的性质和彼此的关联,这正是人们需要探究清楚的问题.活动1观察与思考认识几何图形1.观察图片,思考下列问题:(1)如果用一个“形状”来描述
7、地球或月球,你会用什么图形来概括?预设:圆、椭圆等.(2)如果用一个“形状”来描述上图中的学具,你会用什么图形来概括?预设:长方形、正方形、六边形等.设计意图本问题不要求学生给出比较准确的答案,主要通过情境问题帮助学生体验从几何图形的角度观察生活中的物体.2.几何图形对于各种物体,如果不考虑它们的颜色、材料和质量等,而只关注它们的形状(如方的、圆的等)、大小(如长度、面积、体积等)和它们之间的位置关系(如垂直、平行、相交等),就得到几何图形.图形的形状、大小和它们之间的位置关系是几何研究的主要内容.活动2做一做深化对几何图形的认识1.出示教材第63页问题及图片,让学生自主尝试连线.设计意图帮助
8、学生体会实物与几何图形之间的对应关系,为下一步学习做铺垫.2.如图所示,请你把每个平面图形的名称写在它的下面.处理方式(1)让学生自主填写.(2)思考:几何图形包括哪两种?总结:几何图形包括立体图形(几何体)和平面图形.像正方体、长方体、棱柱、圆柱、圆锥、球等,它们都是立体图形.像线段、直线、三角形、长方形、梯形、六边形、圆等,它们都是平面图形.活动3几何体的基本要素观察以下几何体:1.几何体的面:可以看到,几何体都是由面围成的.如:长方体有六个面,这些面都是平的;圆柱有三个面,两个底面是平的,一个侧面是曲的;球有一个面,是曲的.2.几何体的线:(1)长方体中,面与面交接(相交)的地方形成线.
9、这样的线有几条?是直的还是曲的?(12条直线)(2)在圆柱中,两个底面与侧面交接(相交)的地方形成线.这样的线有几条?是直的还是曲的?(2条曲线)3.几何体的点:在长方体中,线与线交接(相交)的地方形成点.这样的点有几个?(8个)总结:包围着几何体的是面,面与面相交形成线,线与线相交形成点.点、线、面是几何图形的基本要素.知识拓展立体图形与平面图形是两类不同的图形,但它们相互联系,立体图形上的某部分就是平面图形,立体图形是由平面图形组成的.几何图形立体图形:一个图形的各个部分不都在同一个平面上平面图形:一个图形的各部分都在同一个平面上1.下面各组图形都是平面图形的是()A.三角形、圆、球、圆锥
10、B.点、线、面、体C.角、三角形、长方形、圆D.点、相交线、线段、正方体解析:A中球和圆锥是立体图形;B中体是立体图形;D中正方体是立体图形.故选C.2.如图所示,把梯形绕虚线旋转一周形成一个几何体,与它相似的物体是()A.课桌B.灯泡C.篮球D.水桶解析:一个直角梯形绕垂直于底边的腰所在直线旋转一周后成为圆台.答案合适的为D.故选D.3.下列四种说法:平面上的线都是直线;曲面上的线都是曲线;两条直线相交只能得到一个交点;两个平面相交只能得到一条交线.其中不正确的有()A.4个B.3个C.2个D.1个解析:解答本题时注意:不可认为曲面上的线都是曲线,如圆柱的母线就是曲面上的直线,故错误;平面上
11、也有曲线,故错误;正确.故选C.2.1从生活中认识几何图形活动1观察与思考认识几何图形活动2做一做深化对几何图形的认识活动3几何体的基本要素一、教材作业【必做题】教材第64页练习第1,2题.【选做题】教材第65页习题A组第2题.二、课后作业【基础巩固】1.下列物体中与足球形状类似的是()A.易拉罐B.电脑显示器C.烟囱D.西瓜2.下列有六个面的几何体的个数是()长方体;圆柱;四棱柱;正方体;三棱柱.A.1B.2C.3D.43.天空中的流星划过后留下的光线,给我们以什么样的形象()A.点B.线C.面D.体4.对于棱柱与圆柱,围成的面中有曲面的是,有平面的是,面与面相交的线中有曲线的是,只有直线的
12、是.5.由生活中的物体抽象出几何图形,在后面的横线上填出对应的几何体的名称.(1)足球;(2)电视机;(3)漏斗;(4)砖块;(5)纸箱;(6)铁棒.【能力提升】6.如图所示的陀螺是由下列哪两个几何体组合而成的()A.长方体和圆锥B.长方体和三棱锥C.圆柱和三棱锥D.圆柱和圆锥7.在如图所示的几何体中,由三个面围成的几何体有()A.1个B.2个C.3个D.4个8.下列判断正确的有()正方体是棱柱,长方体不是棱柱;正方体是棱柱,长方体也是棱柱;正方体是柱体,圆柱也是柱体;正方体不是柱体,圆柱是柱体.A.1个B.2个C.3个D.4个9.滚动的保龄球的轨迹是一条直线,说明了;雨刷滑过汽车的车窗得到一
13、个扇面,说明了;将一个长方形绕一边旋转得到圆柱,说明了.10.如图所示,至少找出下列几何体的四个共同点.【拓展探究】11.一个多面体,若顶点数是4,面数为4,则棱数应为.12.用6根相同长度的木棒在空间中最多可搭成个正三角形.【答案与解析】1.D(解析:西瓜和足球都类似于球.故选D.)2.C(解析:长方体有6个面,圆柱有3个面,四棱柱有6个面,正方体有6个面,三棱柱有5个面,故有六个面的有3个.)3.B(解析:天空中的流星划过后留下的光线,给我们以线的形象.)4.圆柱棱柱和圆柱圆柱棱柱(解析:圆柱由两个平面和一个曲面围成,相交的线为两条曲线;棱柱由几个长方形与两个多边形围成,相交的线均为直线.
14、)5.(1)球(2)长方体(3)圆锥(4)长方体(5)长方体(6)圆柱6.D(解析:上面是圆柱,下面是圆锥.)7.C(解析:除三棱锥外都是由三个面围成的.)8.B(解析:正方体和长方体都是四棱柱,棱柱和圆柱都是柱体,所以本题中正确.)9.点动成线线动成面面动成体10.解:(1)侧面都有长方形;(2)底面都是多边形;(3)每个面都是平的;(4)都是柱体;(5)经过每个顶点都有三条棱等.11.6(解析:这是一个四面体,即三棱锥,棱数为6.)12.4(解析:用6根火柴棒搭成正四面体,四个面都是正三角形,一共有4个.)认识几何体和认识几何图形不是一个难点,难点是从几何图形中抽象出几何体.为了突破这个教
15、学难点,本课时在教学的过程中,遵循学生的认知规律,采取了步步诱导的教学策略,帮助学生在思考过程中,从点、线、面三个层次加深了对几何体的认识.在教学的过程中,过于依赖教材的素材,没有对课内的教材进行适度拓展.在探讨几何体的组成时,可以选取学生身边熟悉的事物,比如黑板、课桌等,这样更能形象地帮助学生认识几何体的组成.练习(教材第64页)1.解:这个几何体有8个面,18条棱,12个顶点.2.球六棱柱圆锥三棱柱圆柱习题(教材第64页)A组1.解:第一个几何体是三棱柱,平面图形有三角形(2个)、长方形(3个);第二个几何体是圆柱,平面图形有圆(2个);第三个几何体是圆锥,平面图形有圆(1个);第四个几何
16、体是长方体,平面图形有长方形(6个).(画图略)3.解:第一个几何体有4个面,6条线,4个点;第二个几何体有6个面,12条线,8个点;第三个几何体有9个面,16条线,9个点.B组1.解:第一个物体可以看做是由几个圆柱构成的;第二个物体可以看做是球;第三个物体可以看做是由圆柱和圆锥构成的;第四个物体可以看做是圆锥.2.解:第一个图片表示点动成线,第二个图片表示线动成面,第三个图片表示面动成体.常见的立体图形我们生活在三维的世界中,身边有各种各样的物体.我们要善于观察身边的事物,认识立体图形.生活中的立体图形有柱体、锥体、球体.柱体分为圆柱和棱柱,其中圆柱是由两个底面和一个侧面围成的,如图(2)所
17、示,它的底面是两个大小相等且互相平行的圆面,侧面是一个曲面.棱柱是由两个底面和几个侧面围成的,它的底面是两个大小和形状都相同且互相平行的多边形,侧面是n个长方形,一个棱柱的底面是几边形,这个棱柱就是几棱柱.如:底面是三角形的棱柱叫做三棱柱,如图(6)所示;底面是四边形的棱柱叫做四棱柱,如图(1)所示.锥体分为圆锥和棱锥,其中圆锥是由一个底面和一个侧面围成的,它的底面是一个圆,侧面是一个曲面,如图(4)所示;棱锥是由一个底面和几个侧面围成的,它的底面是一个多边形,侧面是有一个公共顶点的三角形,一个棱锥的底面是几边形,这个棱锥就叫做几棱锥,如图(7)所示的棱锥是三棱锥,如图(5)所示的棱锥是四棱锥
18、.球体是由一个曲面围成的封闭的几何体.球体的特征是球体表面上任意一点到球心的距离都相等,如图(3)所示的立体图形是球体.2.2 点和线1.了解点、线段、射线、直线的概念.2.掌握点、线段、射线和直线的表示方法.3.理解并掌握“两点可以确定一条直线”这个基本事实.1.通过实际情境感知点和线,认识点、线段、射线和直线这些几何图形.2.通过观察和画图了解线段、射线和直线的关系及其表示方法.3.通过观察和操作,理解并掌握“两点可以确定一条直线”这个基本事实.1.培养学生乐于思考,敢于创新的精神.2.通过多姿多彩的活动,培养学生的创新意识和发散思维.【重点】点、线段、射线、直线的概念和表示方法.【难点】
19、“两点可以确定一条直线”的基本事实.【教师准备】多媒体课件.【学生准备】复习上一节的知识.导入一:同学们见过这种电子显示屏吧?你知道显示屏上的数字和图形是由什么基本要素构成的吗?设计意图通过生活情境,帮助学生感受“点”在几何图形中的作用.导入二:如图所示,用7根火柴棒可以摆出图中的“8”.你能去掉其中的若干根火柴棒,摆出09中其他的9个数字吗?这种用7条线段构成的数字称为“7画字”,它可以用在计算器或电梯的楼层显示屏上.设计意图教师组织学生交流各自的答案.本题呈现了点、线段在生活和科技中的应用,使学生体会数学与现实世界的密切联系.过渡语点和线是两种最基本的几何图形,又是构成其他几何图形的基本要
20、素.活动1点与线1.出示课本图2 - 2 - 1,请在图上找出表示石刻园、展览中心、花卉园、茶餐厅和健身区的点,并用笔加重描出这个公园的边界线.设计意图体会和感受点和线的关系,为深入理解几何上的点和线做认知准备.2.请指出图中平面图形的顶点和边,立体图形的顶点和棱.处理方式先让学生说出两个平面图形的顶点和边,初步让学生从几何的角度认识点和线的关系,随后让学生说出两个立体图形中点和棱的关系,可以让学生用笔描的方式画出一些点和棱.3.点和线的关系的初步描述点的形象随处可见,如地图上用来表示城市位置的点,绘画中表示天空中星星的点,几何图形中表示顶点的点等等.点运动的轨迹是线.活动2线段、射线和直线思
21、路一1.线段及其表示方法线段的直观形象是拉直的一段线.如跳高的横杆、直尺的边沿、一段铁轨等,都给我们以线段的形象.点和线段的表示方法如图所示.位于线段AB两端的点A,B,叫做这条线段的端点.2.射线及其表示如图所示,将线段AB沿AB方向(或BA方向)无限延伸所形成的图形叫做射线.点A(或点B)叫做射线的端点.3.直线及其表示方法如图所示,将线段AB沿这条线段向两方无限延伸所形成的图形叫做直线.知识拓展直线、射线、线段的联系和区别:名称图形表示方法端点延伸性度量线段线段a线段AB线段BA2个不能延伸可度量射线射线OA1个向一方无限延伸不可度量直线直线l直线AB直线BA无端点向两个方向无限延伸不可
22、度量思路二问题:在数学里,我们常用字母表示图形.一个点可以用一个大写字母表示,如“”这个点可以表示成点A,那么一条线段、一条射线、一条直线又该怎样表示呢?请同学们自主学习线段、射线、直线的表述方法.(阅读教材第66,67页)处理方式学生自主学习,用自己的语言总结叙述线段、射线、直线的表示方法,教师补充并借助多媒体讲解.(1)线段的图形及表示方法:用两个端点的大写字母来表示,或用一个小写字母表示,可以写成:线段AB;线段BA;线段a.(2)射线的图形及表示方法:用它的端点和射线上的另一点来表示,可以写成:射线AB.注意:这两个字母的排列顺序不能互相交换,表示端点的字母必须写在另一个字母的前面,同
23、时也不能用一个小写字母表示.(3)直线的图形及表示方法:用直线上的两个点来表示或用一个小写字母来表示,可以写成:直线AB;直线BA;直线l.提问:生活中有哪些物体可以近似地看作线段、射线、直线?学生讨论后举例,如:吃饭的筷子、铅笔给我们线段的形象;手电筒、激光笔射出的光线都给我们以射线的形象;高速路上的白色实线等给我们直线的形象.设计意图让学生充分交流,丰富线段、射线、直线的生活背景,进一步巩固所学的线段、射线、直线的知识,使学生感受现实生活中含有大量的数学信息,提高学习兴趣,培养学生分析问题、解决问题的能力.活动3两点确定一条直线1.点与直线的关系平面内的一点P与直线l可能有怎样的位置关系?
24、请画出图形,并用相应的语言说明.在同一个平面内,给定一个点与一条直线,它们的位置关系有两种情况.(1)第一种情况:点P在直线l上(直线l经过点P)(2)第二种情况:点P在直线l外(直线l不经过点P)处理方式可以交给学生交流完成,然后强调:因为直线具有无限延长性,所以已知一个点在直线上,就可以断定不存在另一种情况.也就是说,一个点在平面内,要么在直线上,要么不在直线上,二者必居其一.2.过直线外一点的直线提问:(1)过一个点A可以画几条直线?(2)过两点A,B可以画几条直线?(3)如果将一个细木条固定在墙上,至少需要几个钉子?它的依据是什么?提示:过一个已知点可画无数条直线,过两个已知点可以画出
25、直线,但只能画一条直线.处理方式引导学生动手画图,自主思考,相互讨论,描述从操作中所发现的结论,与学生共同总结直线的性质,并板书“经过两点有且只有一条直线”.注意:(1)“有”表示存在性,“仅有”表示唯一性.(2)这个性质还可以说成“两点确定一条直线”.设计意图学生通过动手画图,培养几何作图能力,并在作图过程中发现直线的某些性质.知识拓展(1)线段无粗细之分,有两个端点.理解线段的概念要掌握它的三个特征:直的、有两个端点、可以度量.(2)射线:将线段向一个方向无限延长就形成了射线.手电筒、探照灯等射出来的光线可以近似地看做射线.(3)射线的特点:直的、有一个端点、向一方无限延伸.(4)直线的特
26、点:直的、没有端点、向两方无限延伸.将线段向两个方向无限延伸就形成了直线.(5)经过两点有且只有一条直线可以简述为:两点确定一条直线.“有且只有”中的“有”表示存在性,“只有”表示唯一性,“确定”与“有且只有”的意义相同.1.线段、射线、直线的概念.2.线段、射线、直线的表示方法.3.直线的性质:经过两点有且只有一条直线,可以简述为两点确定一条直线.1.图中直线PQ、射线AB、线段MN能相交的是()解析:根据直线可向两方无限延伸,射线可向一方无限延伸,线段有两个端点解答.只有D选项射线AB与直线PQ能够相交.故选D.2.用一个钉子把一根细木条钉在墙上,木条能绕着钉子转动,这表明;用两个钉子把细
27、木条钉在墙上,就能固定细木条,这表明.解析:用一个钉子把一根细木条钉在墙上,木条能绕着钉子转动,说明过一点有无数条直线;用两个钉子把细木条钉在墙上,就能固定细木条,说明两点确定一条直线.答案:过一点有无数条直线两点确定一条直线3.如图所示,四点A,B,C,D,按照下列语句画出图形:(1)画直线AB;(2)画射线BD;(3)线段AC和线段DB相交于点O.解:如图所示.2.2点和线活动1点与线活动2线段、射线和直线活动3两点确定一条直线经过两点有且只有一条直线一、教材作业【必做题】教材第68页练习.【选做题】教材第68页习题A组第3题.二、课后作业【基础巩固】1.下列说法正确的是()A.直线CD和
28、直线DC是一条直线B.射线CD和射线DC是一条射线C.线段CD和线段DC是两条线段D.直线CD和直线a不能是同一条直线2.下列说法正确的有()直线是射线长度的2倍;线段为直线的一部分;射线为直线长度的12;直线、射线、线段中,线段最短.A.4个B.3个C.2个D.1个3.同一平面内三条直线最多有m个交点,最少有n个交点,则m+n等于()A.2B.3C.4D.54.已知平面内的四个点A,B,C,D,过其中两个点画直线可以画出几条?画图说明.【能力提升】5.如图所示,能读出的线段共有()A.8条B.10条C.6条D.以上都错6.下列说法中错误的是()A.经过一点的直线可以有无数条B.经过两点的直线
29、只有一条C.一条直线只能用一个字母表示D.线段CD和线段DC是同一条线段7.如图所示,点A,B,C,D在同一直线上,那么这条直线上共有线段()A.3条B.4条C.5条D.6条【拓展探究】8.一根绳子弯曲成如图(1)所示的形状.当用剪刀像图(2)那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图(3)那样沿虚线b(ba)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a,b之间把绳子再继续剪(剪刀的方向与a平行),这样一共剪n次时绳子的段数是()A.4n+1B.4n+2C.4n+3D.4n+59.一条直线将平面分成两部分,两条直线最多将平面分成四个部分,那么三条直线将平面最多分成几部分?四
30、条直线将平面最多分成几部分?n条直线呢?10.如图所示.(1)点A,B,C在直线l上,则直线l上共有几条线段?(2)如果直线l上有5个点,则直线l上共有几条线段?(3)如果直线l上有100个点,则直线l上共有几条线段?(4)如果直线l上有n个点,则直线l上共有几条线段?【答案与解析】1.A(解析:直线CD和直线DC都是由C,D这两点确定的,根据两点确定一条直线可知,这两条直线是同一条直线.故选A.)2.D(解析:没有真正体会直线、射线的延伸性,这种延伸性决定了直线、射线无长度,不能比较长短,所以是错误的.故选D.)3.B(解析:三条直线的位置关系有三种情况:三条直线互相平行,此时没有交点;三条
31、直线交于一点;三条直线交于两点;三条直线交于三点.所以m=3,n=0,所以m+n=3.故选B.)4.解:由于题目没有说明已知的四个点是否在一条直线上,所以应分类讨论.(1)当四个点A,B,C,D在同一直线上时,只可以画出一条直线,如图(1)所示;(2)当四个点A,B,C,D中有三个点在同一直线上时,可以画出4条直线,如图(2)所示;(3)当四个点A,B,C,D中任意的三个点都不在同一直线上时,可以画出6条直线,如图(3)所示.5.A(解析:以A为顶点的线段有4条,以B为顶点的线段有4条,以C为顶点的线段有4条,以D为顶点的线段有4条,共16条,由于每条线段都被统计了2次,所以线段共有8条.)6
32、.C(解析:一条直线可以用一个小写字母表示,也可以用两个大写字母表示.)7.D(解析:这条直线上有线段AB,AC,AD,BC,BD,CD,共六条.)8.A(解析:每剪一刀,相当于在一条直线上增加了4个点,剪n次就相当于在这个绳子上增加4n个点.故选A.)9.解:三条直线将平面最多分成7个部分,四条直线将平面最多分成11个部分,n条直线将平面最多分成n(n+1)2+1个部分.10.解:(1)3条.(2)10条.(3)4950条.(4)n(n - 1)2条.在这次教学活动中,利用多媒体为学生创设了生动、直观的活动情境,充分调动了学生的学习积极性.采用了探究式的教学模式,充分发挥了学生的主体作用,体
33、现了学生自主学习、合作学习、探究学习、操作学习的数学学习策略,使学生真正成为课堂的主人.虽然学生对基础知识掌握了,但做题的能力不一定行,还需要在练习中不断加以巩固和提高.画图时要指导学生用直尺规范画图,一定要根据直线、射线、线段的特点画图,画线时某一点不是端点的时候一定要延长.习题(教材第68页)A组1.解:(1)如图(1)所示.(2)如图(2)所示.2.提示:根据“两点确定一条直线”可知只要知道两个树坑的位置,就能确定同一行的树坑所在的直线.3.解:(1)如图(1)所示.(2)如图(2),(3)所示,图(2)表示点C在直线l外,图(3)表示点C在直线l上.B组1.解:(1)点P在直线l上,点
34、Q在直线l外.(2)直线AB,CD相交于点O,点P在直线AB,CD外.(3)直线a,b,c相交于点Q.2.解:如图所示.指出图中线段、射线、直线分别有多少条,并把线段表示出来.解析在表示射线时要特别注意字母的书写位置;数线段时从一端数,不回头;数射线时找端点,一个端点两条射线.解:线段有3条,分别为线段AB,线段AC,线段BC.射线有6条.直线有1条.解题策略引导学生回想前面所学的线段、射线、直线表示方法的区别与联系,说一说怎样表示线段、射线、直线,然后让学生完成本道题的解答,最后教师提问、点拨怎样数线段、射线、直线.2.3 线段的长短1.了解比较线段长短的方法.2.掌握用直尺和圆规作一条线段
35、等于已知线段的方法.3.理解和掌握“两点之间的所有连线中,线段最短”这一基本事实.1.通过比较和操作了解比较线段长短的方法.2.领会“两点之间的所有连线中,线段最短”这一基本事实.1.培养学生乐于思考,敢于创新的精神.2.通过多姿多彩的活动,培养学生的创新意识和发散思维.【重点】线段的大小比较.【难点】线段的比较,线段中点的应用和两点之间的距离.【教师准备】直尺和圆规、两根长短不一的小木棍.【学生准备】直尺和圆规.导入一:如图所示,两条线段a与b谁长谁短?生1:a长.生2:一样长.师:看来这个问题很有迷惑性哦,实际上线段a与b一样长.在现实生活中有很多事情我们不能光凭眼睛的直觉,还需要用事实来
36、说明,今天老师将和同学们一起来学习有关比较线段长短的方法.设计意图让学生明确数学的严谨,不能只通过眼睛来看问题,引出比较线段长短的必要性.导入二:师:篮球明星姚明和小品明星潘长江相比,哪位明星的身高更高?姚明和易建联相比,谁的身高更高?学生思考,交流.问题:你是怎样得出结论的?若把人的身体看作线段,两条线段的长短又是怎样比较的?教师板书:线段的长短.设计意图引导学生探究发现,让学生感受线段的比较方法.从学生熟悉的人物开始,引入线段长短的比较,激发学生的学习热情.导入三:如图所示,小明从家到学校有4条路可走,其中路程最短的是哪一条?说明理由.设计意图利用生活情境,从实际问题入手,帮助学生体验两点
37、之间线段最短的基本事实.过渡语图形的大小是研究图形的主要内容之一.对于两条线段来说,它们的大小关系就表现为长短关系.活动1小明、小亮比身高比较两名同学的身高,可以有几种比较方法?向大家说说你的想法.处理方式让同学思考以下问题:(1)第一幅图根据什么比出两名同学的身高?(2)第二幅图根据什么比出两名同学的身高?(3)第三幅图根据什么比出同学的身高?(4)哪种比较身高的方法更能准确地判断两名同学的身高?设计意图引导学生总结比较身高的三种方法:估测、对比、测量.为引入线段的测量作思想准备.活动2比较线段的长短思路一已知线段AB,CD(如图所示),比较AB,CD的长短,有两种方法:方法1:用刻度尺分别
38、量出线段AB,CD的长度,长度大的线段较长,长度小的线段较短,当长度相等时,两条线段相等.方法2:将线段AB放到线段CD上,使点A和点C重合,点B和点D在点A(点C)的同侧.(1)如图所示,如果点B与点D重合,就说线段AB与CD相等,记作AB=CD.(2)如图所示,如果点B在线段CD上,就说线段AB小于CD,记作ABCD.思路二先让学生用自己的语言描述比较的过程,然后教师边演示边用规范的几何语言描述.叠合法:把线段AB,CD放在同一直线上比较,步骤如下:将线段AB的端点A与线段CD的端点C重合.将线段AB沿着线段CD的方向落下.若端点B与端点D重合,则得到线段AB等于线段CD,可记作:AB=C
39、D(几何语言).若端点B落在D内,则得到线段AB小于线段CD,可记作:ABCD.如图所示:注意:讲此方法时,教师应采用圆规截取线段比较形象,还需向学生讲明从“形”的角度去比较线段的长短.度量法:用刻度尺分别量出线段AB和线段CD的长度,再将长度进行比较.总结:用度量法比较线段的大小,其实就是比较两个数的大小.(从“数”的角度去比较线段的长短)知识拓展(1)利用叠合法比较长短时,应将两条线段的一个端点重合,另一个端点在这个点的同一侧.(2)叠合法是从“形”的方面来进行比较的,度量法是从“数”的方面来比较的,两者比较的结果是一致的.活动3作一条线段等于已知线段过渡语我们知道线段有长短,那么给你一条
40、线段,你能画出一条线段等于已知线段吗?学生讨论、交流想法.生:用刻度尺测量线段的长度,然后画一条线段和已知线段的长度相等.那么如果用没有刻度的直尺和圆规,应该怎样画一条线段等于已知线段呢?说明:在数学中,我们常限定用无刻度的直尺和圆规作图,这就是尺规作图.教师让学生拿出直尺和圆规,边讲解边操作:首先任意确定一条已知线段AB.(1)画射线AC;(2)用圆规量出线段AB的长度;(3)在射线AC上截取线段AB=AB.线段AB即为所求.让学生独立操作,在练习本上再任意画一条线段,利用尺规作图作出与已知线段相等的线段,有问题可以小组交流.设计意图让学生掌握尺规作图的方法,通过动手实践,培养学生解决问题的
41、能力和自主创新的能力.活动4两点之间线段最短过渡语我们了解了比较线段长短的方法,那么线段有哪些性质呢?如图所示的是从北京到济南的铁路线和公路线.请在图中画出连接这两个城市的线段.在这三条线中,哪一条最短?预设:学生画出三条线,根据生活经验,指出哪条线段最短.总结:两点之间的所有连线中,线段最短.简单地说:两点之间,线段最短.请你举例说一说这条性质在生活中有哪些应用?教师指出:两点之间线段的长度,叫做两点之间的距离.强调两点之间线段的长度叫做两点之间的距离,而不是两点间的线段,线段是图形,线段的长度是数值.你知道运动会上掷铅球的运动员的成绩是怎样测量的吗?它用到了哪些数学知识?你还能再举出一些例
42、子吗?设计意图通过对问题的解决,让学生掌握线段的性质以及两点之间的距离的定义,加深对知识的理解和掌握,培养学生的观察、发现、概括能力.知识拓展借助生活中的具体情境,我们容易得到“两点之间,线段最短”这一基本事实,利用这一基本事实,可以帮助我们进行某些决策,从而达到最佳效果.1.线段的长短比较有两种方法:一是度量法,用刻度尺量出线段的长度进行比较;二是叠合法,即把一条线段移动到另一条线段上.2.利用两端点重合的方法,我们可以找到线段的中点,由线段的这一点分成的两条线段长度相等,并且都是整个线段的一半.3.在实际生活中,我们往往要找最短路径,这是因为两点之间线段最短.而这两点之间线段的长度,就是这
43、两点之间的距离.1.下列说法正确的个数为()线段的长度比较可以由刻度尺测量;比较线段长度时,在同一条直线上,把一端点重合,再比较另一端点是否重合;线段的长度实质是两点间的距离;连接两点间的所有连线中,线段最短.A.1B.2C.3D.4解析:线段的长短比较有两种方法:一是度量法,二是叠合法.线段的长度实质是连接两点的线段的长度;两点之间,线段最短.故选D.2.如图所示,从A地到B地有三条道路,若在A地有一只小狗,在B地有一些骨头,小狗看见骨头后,会沿哪一条路奔向B地,为什么?解:会沿着第条路奔向B地.因为第条路是直的,根据两点之间,线段最短,可知小狗沿第条路奔向B地.3.如图所示,三角形ABC的三边可表示成线段AB,线段AC,线段BC,在下面的横线上填入“”“(2)(3)理由:两点之间,线段最短.2.3线段的长短活动1小明、小亮比身高活动2比较线段的长短活动3作一条线段等于已知线段活动4两点之间线段最短一、教材作业【必做题】教材第71页练习.【选做题】教材第71页习题A组第2题.二、课后作业【基础巩固】1.连接两点的所有连线中()A.线段最短B.直线最短C.射线最短D.圆弧最短2.下列关于画图的语句中正确的是()A.画直线AB=10厘米B.画射线OB=10厘米C.已知A,B,C三点,过这三点画一条直线D.过直线AB外一点画一条直线和直线A
链接地址:https://www.77wenku.com/p-217671.html