2022年山东省淄博市中考数学试卷(含答案解析)
《2022年山东省淄博市中考数学试卷(含答案解析)》由会员分享,可在线阅读,更多相关《2022年山东省淄博市中考数学试卷(含答案解析)(29页珍藏版)》请在七七文库上搜索。
1、2022年山东省淄博市中考数学试卷一、选择题:本大题共12个小题,每小题5分,共60分 1. 若实数a的相反数是1,则a+1等于( )A. 2B. 2C. 0D. 2. 下列图案中,既是轴对称图形又是中心对称图形的是( )A B. C. D. 3. 经过折叠可以围成正方体,且在正方体侧面上的字恰好环绕组成一个四字成语的图形是( )A. B. C. D. 4. 小红在“养成阅读习惯,快乐阅读,健康成长”读书大赛活动中,随机调查了本校初二年级20名同学,在近5个月内每人阅读课外书的数量,数据如下表所示:人数3485课外书数量(本)12131518则阅读课外书数量的中位数和众数分别是( )A. 13
2、,15B. 14,15C. 13,18D. 15,155. 某城市几条道路的位置关系如图所示,道路ABCD,道路AB与AE的夹角BAE50城市规划部门想新修一条道路CE,要求CFEF,则E的度数为( )A. 23B. 25C. 27D. 306. 下列分数中,和最接近的是( )A. B. C. D. 7. 如图,在ABC中,AB=AC,A=120分别以点A和C为圆心,以大于AC的长度为半径作弧,两弧相交于点P和点Q,作直线PQ分别交BC,AC于点D和点E若CD=3,则BD的长为( )A. 4B. 5C. 6D. 78. 计算的结果是( )A. 7a6b2B. 5a6b2C. a6b2D. 7a
3、6b29. 为扎实推进“五育”并举工作,加强劳动教育,某校投入2万元购进了一批劳动工具开展课后服务后,学生的劳动实践需求明显增强,需再次采购一批相同的劳动工具,已知采购数量与第一次相同,但采购单价比第一次降低10元,总费用降低了15%设第二次采购单价为x元,则下列方程中正确的是( )A. B. C. D 10. 如图,在边长为4的菱形ABCD中,E为AD边的中点,连接CE交对角线BD于点F若DEFDFE,则这个菱形的面积为()A. 16B. 6C. 12D. 3011. 若二次函数的图象经过P(1,3),Q(m,n)两点,则代数式的最小值为( )A. 1B. 2C. 3D. 412. 如图,在
4、ABC中,ABAC,点D在AC边上,过ABD的内心I作IEBD于点E若BD10,CD4,则BE的长为( )A. 6B. 7C. 8D. 9二、填空题:本大题共5个小题,每小题4分,共20分请直接填写最后结果13. 要使式子有意义,则的取值范围是_14. 分解因式:=_.15. 如图,在平面直角坐标系中,平移ABC至A1B1C1的位置若顶点A(3,4)的对应点是A1(2,5),则点B(4,2)的对应点B1的坐标是_16. 计算的结果为_17. 如图,正方形ABCD的中心与坐标原点O重合,将顶点D(1,0)绕点A(0,1)逆时针旋转90得点D1,再将D1绕点B逆时针旋转90得点D2,再将D2绕点C
5、逆时针旋转90得点D3,再将D3绕点D逆时针旋转90得点D4,再将D4绕点A逆时针旋转90得点D5依此类推,则点D2022的坐标是_三、解答题:本大题共7个小题,共70分解答要写出必要的文字说明,证明过程或演算步骤18. 解方程组:19. 如图,ABC是等腰三角形,点D,E分别在腰AC,AB上,且BECD,连接BD,CE求证:BDCE20. 如图,直线y=kx+b与双曲线y=相交于A(1,2),B两点,与x轴相交于点C(4,0)(1)分别求直线AC和双曲线对应的函数表达式;(2)连接OA,OB,求AOB的面积;(3)直接写出当x0时,关于x的不等式kx+b的解集21. 某中学积极落实国家“双减
6、”教育政策,决定增设“礼仪”“陶艺”“园艺”“厨艺”及“编程”等五门校本课程以提升课后服务质量,促进学生全面健康发展为优化师资配备,学校面向七年级参与课后服务的部分学生开展了“你选修哪门课程(要求必须选修一门且只能选修一门)?”的随机问卷调查,并根据调查数据绘制了如下两幅不完整的统计图:请结合上述信息,解答下列问题:(1)共有名学生参与了本次问卷调查;“陶艺”在扇形统计图中所对应的圆心角是度;(2)补全调查结果条形统计图;(3)小刚和小强分别从“礼仪”等五门校本课程中任选一门,请用列表法或画树状图法求出两人恰好选到同一门课程的概率22. 如图,希望中学的教学楼AB和综合楼CD之间生长着一棵高度
7、为12.88米的白杨树EF,且其底端B,D,F在同一直线上,BFFD40米在综合实践活动课上,小明打算借助这棵树的高度测算出综合楼的高度,他在教学楼顶A处测得点C的仰角为9,点E的俯角为16科学计算器按键顺序计算结果(已取近似值)0.1560.1580.2760.287问小明能否运用以上数据,得到综合楼高度?若能,请求出其高度(结果精确到0.01米);若不能,说明理由(解答过程中可直接使用表格中的数据哟!)23. 已知ABC是O内接三角形,BAC的平分线与O相交于点D,连接DB(1)如图1,设ABC的平分线与AD相交于点I,求证:BD=DI;图1(2)如图2,过点D作直线DEBC,求证:DE是
8、O的切线;图2(3)如图3,设弦BD,AC延长后交O外一点F,过F作AD的平行线交BC的延长线于点G,过G作O的切线GH(切点为H),求证:GF=GH图324. 如图,抛物线yx2+bx+c与x轴相交于A,B两点(点A在点B左侧),顶点D(1,4)在直线l:yx+t上,动点P(m,n)在x轴上方的抛物线上(1)求这条抛物线对应的函数表达式;(2)过点P作PMx轴于点M,PNl于点N,当1m3时,求PM+PN的最大值;(3)设直线AP,BP与抛物线的对称轴分别相交于点E,F,请探索以A,F,B,G(G是点E关于x轴的对称点)为顶点的四边形面积是否随着P点的运动而发生变化,若不变,求出这个四边形的
9、面积;若变化,说明理由2022年山东省淄博市中考数学试卷一、选择题:本大题共12个小题,每小题5分,共60分 1. 若实数a的相反数是1,则a+1等于( )A. 2B. 2C. 0D. 【答案】A【解析】根据相反数的定义即可求解【详解】解:1的相反数是1,a1,a+1=2故选:A【点睛】本题主要考查了相反数,熟记相反数的定义是解题的关键2. 下列图案中,既是轴对称图形又是中心对称图形的是( )A. B. C. D. 【答案】D【解析】根据中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,如果一个图形沿一条直线折叠,直线
10、两旁的部分能够互相重合,这个图形叫做轴对称图形,进行判断即可【详解】解:A不是中心对称图形,也不是轴对称图形,故此选项不合题意;B不是中心对称图形,是轴对称图形,故此选项不合题意;C不是中心对称图形,是轴对称图形,故此选项不合题意;D既是轴对称图形,又是中心对称图形,故此选项符合题意;故选:D【点睛】本题考查的是中心对称图形与轴对称图形的概念,正确掌握相关定义是解题关键3. 经过折叠可以围成正方体,且在正方体侧面上的字恰好环绕组成一个四字成语的图形是( )A. B. C. D. 【答案】C【解析】根据正方体侧面上的字恰好环绕组成一个四字成语,即是正方体的表面展开图,相对的面之间一定相隔一个正方
11、形,且有两组相对的面,根据这一特点作答【详解】解由正方体的表面展开图,相对的面之间一定相隔一个正方形可知,A.“心”、“想”、“事”、“成”四个字没有相对的面,故不符合题意; B.“吉”、“祥”、“如”、“意”四个字没有相对的面,故不符合题意;C.“金”与“题”相对,“榜”、“名”是相对的面,故符合题意; D.“马”、“到”、“成”、“功”四个字没有相对的面,故不符合题意; 故选C【点睛】本题主要考查了正方体相对两个面上的文字,明确正方体的表面展开图,相对的面之间一定相隔一个正方形是解题的关键4. 小红在“养成阅读习惯,快乐阅读,健康成长”读书大赛活动中,随机调查了本校初二年级20名同学,在近
12、5个月内每人阅读课外书的数量,数据如下表所示:人数3485课外书数量(本)12131518则阅读课外书数量的中位数和众数分别是( )A. 13,15B. 14,15C. 13,18D. 15,15【答案】D【解析】利用中位数,众数的定义即可解决问题【详解】解:中位数为第10个和第11个的平均数,众数为15故选:D【点睛】本题考查了中位数和众数,解题的关键是掌握平均数、中位数和众数的概念5. 某城市几条道路的位置关系如图所示,道路ABCD,道路AB与AE的夹角BAE50城市规划部门想新修一条道路CE,要求CFEF,则E的度数为( )A. 23B. 25C. 27D. 30【答案】B【解析】先根据
13、平行线的性质,由得到BAE=DFE=50,然后根据三角形外角性质计算E的度数【详解】解:,BAE50, BAE=DFE=50,CFEF,C=E,DFE=C+E=50,E=25故选:B【点睛】本题考查了平行线的性质,等腰三角形的性质,以及三角形的外角性质,熟练掌握平行线的性质是解题的关键6. 下列分数中,和最接近的是( )A. B. C. D. 【答案】A【解析】把分数化小数,用分数的分子除以分母即得小数商,除不尽时通常保留三位小数,据此先分别把每个选项中的分数化成小数,进而比较得解【详解】A. ;B. ;C. ;D ;因为故和最接近的是,故选择:A【点睛】本题主要考查有理数大小的比较,熟练掌握
14、分数化为小数的方法是解题的关键7. 如图,在ABC中,AB=AC,A=120分别以点A和C为圆心,以大于AC的长度为半径作弧,两弧相交于点P和点Q,作直线PQ分别交BC,AC于点D和点E若CD=3,则BD的长为( )A. 4B. 5C. 6D. 7【答案】C【解析】连接AD,由作图知:DE是线段AC的垂直平分线,得到AD=CD=3,DAC=C=30,求得BAD=90,再利用含30度角的直角三角形的性质即可求解【详解】解:连接AD,由作图知:DE是线段AC的垂直平分线,AD=CD=3,DAC=C,AB=AC,A=120,B=C=30,则DAC=C=30,BAD=120-DAC=90,BD=2AD
15、=6,故选:C【点睛】本题考查了作图-基本作图:熟练掌握5种基本作图是解决问题的关键也考查了线段垂直平分线的性质,等腰三角形的性质,含30度角的直角三角形的性质8. 计算的结果是( )A. 7a6b2B. 5a6b2C. a6b2D. 7a6b2【答案】C【解析】先根据积的乘方法则计算,再合并同类项【详解】解:原式,故选:C【点睛】本题主要考查了积的乘方,合并同类项,解题的关键是掌握相应的运算法则9. 为扎实推进“五育”并举工作,加强劳动教育,某校投入2万元购进了一批劳动工具开展课后服务后,学生的劳动实践需求明显增强,需再次采购一批相同的劳动工具,已知采购数量与第一次相同,但采购单价比第一次降
16、低10元,总费用降低了15%设第二次采购单价为x元,则下列方程中正确的是( )A. B. C. D. 【答案】D【解析】设第二次采购单价为x元,则第一次采购单价为(x+10)元,根据单价=总价数量,结合总费用降低了15%,采购数量与第一次相同,即可得出关于x的分式方程【详解】解:设第二次采购单价为x元,则第一次采购单价为(x+10)元,依题意得:,故选:D【点睛】本题考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键10. 如图,在边长为4的菱形ABCD中,E为AD边的中点,连接CE交对角线BD于点F若DEFDFE,则这个菱形的面积为()A. 16B. 6C.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 山东省 淄博市 中考 数学试卷 答案 解析
链接地址:https://www.77wenku.com/p-224409.html