2021-2022学年浙江省温州市鹿城区二校联考九年级上期中数学试卷(含答案解析)
《2021-2022学年浙江省温州市鹿城区二校联考九年级上期中数学试卷(含答案解析)》由会员分享,可在线阅读,更多相关《2021-2022学年浙江省温州市鹿城区二校联考九年级上期中数学试卷(含答案解析)(24页珍藏版)》请在七七文库上搜索。
1、 浙江省温州市鹿城区二校联考九年级浙江省温州市鹿城区二校联考九年级上上期中数学试卷期中数学试卷 一、选择题(本题有一、选择题(本题有 10 小题,每小题小题,每小题 3 分,共分,共 40 分)分) 1已知O 的半径为 5cm,点 P 是O 外一点,则 OP 的长可能是( ) A3cm B4cm C5cm D6cm 2将抛物线 yx2向右平移 2 个单位后,抛物线的解析式为( ) Ay(x+2)2 Byx2+2 Cy(x2)2 Dyx22 3如图所示的齿轮有 16 个齿,每两齿之间间隔相等,相邻两齿间的圆心角 的度数为( ) A20 B22.5 C25 D30 4如图,直线 abc,直线 AC
2、 分别交 a,b,c 于点 A,B,C,直线 DF 分别交 a,b,c 于点 D,E,F若DE2EF,AC6,则 AB 的长为( ) A2 B3 C4 D5 5 如图, 四边形 ABCD 内接于O, BC 为直径, BD 平分ABC, 若ABC40, 则A 的度数为 ( ) A105 B110 C115 D120 6 如图, 两个五边形是位似图形, 位似中心为点 O, 点 A 与 A对应, 若小五边形的周长为 4,则大五边形的周长为( ) A6 B9 C10 D25 7如图,小明以抛物线为灵感,在平面直角坐标系中设计了一款高 OD 为 14 的奖杯,杯体轴截面 ABC 是抛物线 y+5 的一部
3、分,则杯口的口径 AC 为( ) A7 B8 C9 D10 8如图,点 P 是ABC 的重心,过点 P 作 DEAC 交 BC,AB 于 D,E,EFBC 交 AC 于点 F,若 AC8,BC11,则四边形 CDEF 的周长为( ) A9 B18 C19 D20 9已知两点 A(2,y1) ,B(6,y2)均在抛物线 yx22bx+c 上,若 y1y2,则 b 的取值范围为( ) Ab4 Bb4 Cb4 Db4 10如图,点 C 为线段 AB 的中点,在 AC 上取点 D,分别以 AD,CD,BC,BD 为边向上作正方形 ADGH,CDKL,BCIJ,DBEF,将其面积依次记为 S1,S2,S
4、3,S4,在几何原本有这样一个结论;S1+S42(S2+S3) 当 AB2 时,若 A,K,J 共线,则图中阴影部分的面积为( ) A B C D 二、填空题(本题有二、填空题(本题有 6 小题,每小题小题,每小题 3 分,共分,共 30 分)分) 11二次函数 y(x1)2+2 的最小值是 12 如图, 在平面直角坐标系中, 点 A, B, C 都在格点上, 过 A, B, C 三点作一圆弧, 则圆心的坐标是 13如图,在 RtABC 中,CAB50,点 D 在斜边 AB 上,如果ABC 绕点 B 旋转后与EBD 重合,连结 AE,那么EAB 的度数为 14如图 1,哥特式尖拱是由两段不同圆
5、心的圆弧组成的轴对称图形,叫做两心尖拱如图 2,已知 P,Q分别是和所在圆的圆心,且均在 AB 上,若 PQ2m,AB6m,则拱高 CD 的长为 m 15如图,抛物线 yx22x3 与 x 轴相交于 A,B 两点,点 C 在对称轴上,且位于 x 轴的上方,将ABC沿直线 AC 翻折得到ABC,若点 B恰好落在抛物线的对称轴上,则点 C 的坐标为 16如图,在 RtABC 中,已知A90,AB6,BC10,D 是线段 BC 上的一点,以 C 为圆心,CD为半径的半圆交AC边于点E, 交BC的延长线于点F, 射线BE交于点G, 则BEEG的最大值为 三、解答题(共三、解答题(共 8 小题,满分小题
6、,满分 68 分)分) 17 (8 分) (1)已知线段 a2,b9,求线段 a,b 的比例中项 (2)已知 x:y4:3,求的值 18 (8 分)已知抛物线 yx26x+5 (1)求该抛物线的顶点坐标 (2)该抛物线交 x 轴于 A,B 两点,交 y 轴于点 C,求ABC 的面积 19 (8 分)铁路道口的栏杆如图,其 A,B 两端到旋转支点 C 的距离分别为 AC1.2m,BC15m栏杆在水平状态下到地面的距离 CD 为 1.3m,栏杆绕点 C 转动,当 A 端下降至离地距离 AE 为 0.9m 时,求此时B 端到地面的距离(BF)为多少米? 20 (8 分)我们把顶点都在格点上的三角形叫
7、做格点三角形在如下 99 的方格中已给出格点三角形 ABC和格点 D,请根据下列要求在方格中画图 (1)在图 1 中,作与ABC 相似的格点DEF,且满足 SDEF2SABC (2)在图 2 中,作与ABC 相似的格点PEF,使点 D 为斜边 EF 的三等分点 21 (10 分)如图,抛物线 y+bx+c 过点 A(1,0)和点 B(0,2) (1)求该抛物线的函数表达式 (2)将该抛物线上的点 M(m,p)向右平移至点 N(n,q) ,当点 N 落在该抛物线上且位于第一象限时,求 m 的取值范围 22 (12 分)如图,AB 是O 的直径,OA4,弦 CDAB 于点 G,点 E 是上的一点,
8、AE 与 CD 相交于点 F,且 ACCE (1)求证:ACFCAF (2)点 P 在上,连接 PC 交 AE 于 Q,当ACG30,且 DP3FQ 时,求 CP 的长 23某餐饮店每天限量供应某一爆款菜品大份袋,小份袋合计 100 份,且当天全部销售完毕,其成本和售价如下表所示 份量 小份装 大份装 成本(元/份) 40 60 售价(元/份) 60 100 从该店店长处获悉:该餐饮店平均每天实出的小份装比大份装多 40 份 (1)求该店每天销售这款爆品菜品获得的总利润 (2)店长为了增加利润,准备提高小份装的售价,同时降低大份装的售价,售卖时发现:小份装售价每升 1 元,每天会少销售 4 份
9、;大份装售价每降 1 元,每天可多销售 2 份设小份装的售价提高了 m 元(m为整数) 每售出一份小份装可获利 元,此时大份装每天可售出 份 (3)当 m 取何值时,每天获利最多?最大利润为多少元? 24 (14 分)如图,矩形 ABCD 中,AB6,AD8点 E 是线段 BD 上一点,过点 A,E,D 的O 交 CD 延长线于点 F,连结 AE,AF,EF (1)求证:AEFBAD (2)连接 OE,OD,当AEB 与OED 的一个内角相等时,求所有满足条件的 BE 的长 (3)将ABD 绕点 D 旋转,记旋转后 A 和 B 的对应点分别为 P,Q,当 P,Q 同时落在O 上时,求点P 到弦
10、 AD 的距离 参考答案解析参考答案解析 一、选择题(本题有一、选择题(本题有 10 小题,每小题小题,每小题 3 分,共分,共 40 分)分) 1已知O 的半径为 5cm,点 P 是O 外一点,则 OP 的长可能是( ) A3cm B4cm C5cm D6cm 【分析】设点与圆心的距离 d,已知点 P 在圆外,则 dr 【解答】解:当点 P 是O 外一点时,OP5cm,A、B、C 均不符 故选:D 【点评】本题考查了点与圆的位置关系,确定点与圆的位置关系,就是比较点与圆心的距离和半径的大小关系 2将抛物线 yx2向右平移 2 个单位后,抛物线的解析式为( ) Ay(x+2)2 Byx2+2
11、Cy(x2)2 Dyx22 【分析】按照“左加右减,上加下减”的规律求则可 【解答】解:根据题意 yx2的图象向右平移 2 个单位得 y(x2)2 故选:C 【点评】考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减 3如图所示的齿轮有 16 个齿,每两齿之间间隔相等,相邻两齿间的圆心角 的度数为( ) A20 B22.5 C25 D30 【分析】根据正多边形的中心角,计算即可 【解答】解:由题意这是正十六边形,中心角 22.5, 故选:B 【点评】本题考查正多边形的有关性质,解题的关键是记住中心角 4如图,直线 abc,直线 AC 分别交 a,b,c 于点 A,B,C,直线 D
12、F 分别交 a,b,c 于点 D,E,F若DE2EF,AC6,则 AB 的长为( ) A2 B3 C4 D5 【分析】根据平行线分线段成比例定理列出比例式,把已知数据代入计算即可 【解答】解:abc, , DE2EF,AC6, 2, 解得:AB4, 故选:C 【点评】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键 5 如图, 四边形 ABCD 内接于O, BC 为直径, BD 平分ABC, 若ABC40, 则A 的度数为 ( ) A105 B110 C115 D120 【分析】 首先根据角平分线的定义及ABC 的度数求得DBC, 再根据圆周角定理推论得BDC90,然
13、后求得C 的度数,利用圆内接四边形的性质求得答案即可 【解答】解:BD 平分ABC,ABC40, DBC20, BC 是直径, BDC90, C90DBC902070, 四边形 ABCD 内接于O, A180C18070110, 故选:B 【点评】本题考查了圆内接四边形及圆周角定理的知识,解题的关键是了解圆内接四边形的对角互补,难度不大 6 如图, 两个五边形是位似图形, 位似中心为点 O, 点 A 与 A对应, 若小五边形的周长为 4,则大五边形的周长为( ) A6 B9 C10 D25 【分析】直接利用位似图形的性质得出相似比,进而得出答案 【解答】解:两个五边形是位似图形,位似中心为点
14、O,点 A 与 A对应, , , 小五边形的周长为 4,设大正方形的周长为 x, , 解得:x10 故选:C 【点评】此题主要考查了位似图形,正确得出相似比是解题关键 7如图,小明以抛物线为灵感,在平面直角坐标系中设计了一款高 OD 为 14 的奖杯,杯体轴截面 ABC 是抛物线 y+5 的一部分,则杯口的口径 AC 为( ) A7 B8 C9 D10 【分析】利用待定系数法求出 A、C 的坐标,可求答案 【解答】解:OD 为 14,14x2+5,解得 x, A(,14) ,C(,14) , AC()9, 故选:C 【点评】本题是关于二次函数应用题,主要考查了二次函数图象和性质,待定系数法,熟
15、练掌握用待定系数法求点的坐标是解题的关键 8如图,点 P 是ABC 的重心,过点 P 作 DEAC 交 BC,AB 于 D,E,EFBC 交 AC 于点 F,若 AC8,BC11,则四边形 CDEF 的周长为( ) A9 B18 C19 D20 【分析】连接 BP 并延长交 AC 于点 G,由ABC 的重心点 P 可知 BP:BG2:3,然后得到 BD:BCED:AC2:3,从而求得 ED 和 FC 的长,然后得到 CD:BC1:3,再结合 EFBC 求得四边形 CDEF是平行四边形,最后求得四边形 CDEF 的周长 【解答】解:连接 BP 并延长交 AC 于点 G, ABC 的重心点 P,
16、BP:BG2:3, EDAC, BDPBCG,BEPBAG, , , AC8,BC11, ED,CD, EFBC,EDAC, 四边形 CDEF 是平行四边形, 四边形 CDEF 的周长为 2(+)18 故选:B 【点评】本题考查了三角形重心的性质、相似三角形的判定与性质、平行四边形的判定与性质,解题的关键是由ABC 的重心得到相关线段长度的比值 9已知两点 A(2,y1) ,B(6,y2)均在抛物线 yx22bx+c 上,若 y1y2,则 b 的取值范围为( ) Ab4 Bb4 Cb4 Db4 【分析】根据题意和二次函数的性质和对称性可判断 b 的范围 【解答】解:当抛物线 yx22bx+c(
17、a0)的对称轴为直线 xb,a1 开口向上, 两点 A(2,y1) ,B(6,y2)均在抛物线上 y1y2, 则 b26b,解得 b4, 故选:A 【点评】本题考查二次函数的性质、二次函数图象上点的坐标特征以及二次函数的对称性,熟练掌握利用对称性解决抛物线比较大小的问题是解题的关键 10如图,点 C 为线段 AB 的中点,在 AC 上取点 D,分别以 AD,CD,BC,BD 为边向上作正方形 ADGH,CDKL,BCIJ,DBEF,将其面积依次记为 S1,S2,S3,S4,在几何原本有这样一个结论;S1+S42(S2+S3) 当 AB2 时,若 A,K,J 共线,则图中阴影部分的面积为( )
18、A B C D 【分析】 根据正方形的性质证明ADKABJ, 设 CDx, 则 AD1x, KDCDx, 所以,解得 x,再根据图形可得 S阴影部分+S2+S3S1+S42(S2+S3) ,所以 S阴影部分S2+S3CD2+BC2,进而可得结果 【解答】解:根据题意可知:DKBJ, ADKABJ, , 点 C 为线段 AB 的中点,AB2, ACBCBJ1, 设 CDx, 则 AD1x,KDCDx, , 解得 x, AD1x,CDDK, S阴影部分+S2+S3S1+S42(S2+S3) , S阴影部分S2+S3 CD2+BC2 ()2+12 +1 故选:A 【点评】本题考查了相似三角形的判定与
19、性质,正方形的性质,解决本题的关键是掌握相似三角形面积比等于相似比的平方 二、填空题(本题有二、填空题(本题有 6 小题,每小题小题,每小题 3 分,共分,共 30 分)分) 11二次函数 y(x1)2+2 的最小值是 2 【分析】本题考查二次函数最大(小)值的求法 【解答】解:二次函数 y(x1)2+2 开口向上,其顶点坐标为(1,2) , 所以最小值是 2 【点评】本题考查二次函数的基本性质,题目给出的是顶点式,若是一般式则需进行配方化为顶点式或者直接运用顶点公式 12 如图, 在平面直角坐标系中, 点 A, B, C 都在格点上, 过 A, B, C 三点作一圆弧, 则圆心的坐标是 (2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 2022 学年 浙江省 温州市 城区 联考 九年级 上期 数学试卷 答案 解析
链接地址:https://www.77wenku.com/p-224737.html