2023年中考数学专题训练:二次函数与特殊的三角形(含答案解析)
《2023年中考数学专题训练:二次函数与特殊的三角形(含答案解析)》由会员分享,可在线阅读,更多相关《2023年中考数学专题训练:二次函数与特殊的三角形(含答案解析)(39页珍藏版)》请在七七文库上搜索。
1、中考专题训练:二次函数与特殊的三角形1如图,已知与抛物线C1过 A(-1,0)、B(3,0)、C(0,-3).(1)求抛物线C1 的解析式(2)设抛物线的对称轴与 x 轴交于点 P,D 为第四象限内的一点,若CPD 为等腰直角三角形,求出 D 点坐标2在平面直角坐标系中,抛物线y=-(x-3)与x轴交于A、B两点(点A在点B的左侧),与y轴交于C点.(1)求点A,B,C的坐标;(2)判断ABC的形状,并说明理由;(3)若点P在抛物线上,且PBA=60,求点P的坐标.3已知一次函数yx+1与抛物线yx2+bx+c交A(m,9),B(0,1)两点,点C在抛物线上且横坐标为6(1)写出抛物线的函数表
2、达式;(2)判断ABC的形状,并证明你的结论;(3)平面内是否存在点Q在直线AB、BC、AC距离相等,如果存在,请直接写出所有符合条件的Q的坐标,如果不存在,说说你的理由4二次函数y=的图象与x轴交于点A和点B,以AB为边在x轴下方作正方形ABCD,点P是x轴上一动点,连接DP,过点P作DP的垂线与y轴交于点E(1)求出m的值并求出点A、点B的坐标(2)当点P在线段AO(点P不与A、O重合)上运动至何处时,线段OE的长有最大值,求出这个最大值;(3)是否存在这样的点P,使PED是等腰三角形?若存在,请求出点P的坐标及此时PED与正方形ABCD重叠部分的面积;若不存在,请说明理由5定义:在平面直
3、角坐标系xOy中,直线ya(xm)+k称为抛物线ya(xm)2+k的关联直线(1)求抛物线yx2+6x1的关联直线;(2)已知抛物线yax2+bx+c与它的关联直线y2x+3都经过y轴上同一点,求这条抛物线的表达式;(3)如图,顶点在第一象限的抛物线ya(x1)2+4a与它的关联直线交于点A,B(点A在点B的左侧),与x轴负半轴交于点C,连结AC、BC当ABC为直角三角形时,求a的值6如图,在平面直角坐标系中,二次函数yax2+bx3交x轴于点A(3,0)、B(1,0),在y轴上有一点E(0,1),连接AE(1)求二次函数的表达式;(2)若点D为抛物线在x轴负半轴下方的一个动点,求ADE面积的
4、最大值;(3)抛物线对称轴上是否存在点P,使AEP为等腰三角形?若存在,请直接写出所有P点的坐标;若不存在,请说明理由7如图,已知直线y=3x3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合)(1)求抛物线的解析式;(2)求ABC的面积;(3)在抛物线的对称轴上,是否存在点M,使ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标8如图所示,已知抛物线的顶点为坐标原点O,矩形ABCD的顶点A,D在抛物线上,且AD平行x轴,交y轴于点F,AB的中点E在x轴上,B点的坐标为(2,1),点P(a,b)在抛物线上运动(点P
5、异于点O)(1)求此抛物线的解析式(2)过点P作CB所在直线的垂线,垂足为点R,求证:PF=PR;是否存在点P,使得PFR为等边三角形?若存在,求出点P的坐标;若不存在,请说明理由;延长PF交抛物线于另一点Q,过Q作BC所在直线的垂线,垂足为S,试判断RSF的形状9如图,在平面直角坐标系中,ACB=90,OC=2OB,tanABC=2,点B的坐标为(1,0)抛物线y=x2+bx+c经过A、B两点(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE求点P的坐标;在直线PD上是否存在点M,使ABM为直角三角形?若存在,求出符合条
6、件的所有点M的坐标;若不存在,请说明理由10如图,抛物线与轴交于、两点,与轴交于点,且.(1)求抛物线的解析式及顶点的坐标;(2)判断的形状,证明你的结论;(3)点是轴上的一个动点,当的值最小时,求的值.11如图,在平面直角坐标系中,抛物线经过原点O,与x轴交于点A(5,0),第一象限的点C(m,4)在抛物线上,y轴上有一点B(0,10).(I).求抛物线的解析式及它的对称轴;()点在线段OB上,点Q在线段BC上,若,且,求n的值;()在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三形?若存在,求出点M的坐标;若不存在,请说明理由.12如图,已知直线与抛物线相交于点和点两
7、点.(1)求抛物线的函数表达式;(2)若点是位于直线上方抛物线上的一动点,当的面积最大时,求此时的面积及点的坐标;(3)在轴上是否存在点,使是等腰三角形?若存在,直接写出点的坐标(不用说理);若不存在,请说明理由.13抛物线yax2+bx3(a0)与直线ykx+c(k0)相交于A(1,0)、B(2,3)两点,且抛物线与y轴交于点C(1)求抛物线的解析式;(2)求出C、D两点的坐标(3)在第四象限抛物线上有一点P,若PCD是以CD为底边的等腰三角形,求出点P的坐标14如图,在平面直角坐标系中,二次函数yx2+bx+c的图象与坐标轴交于A,B,C三点,其中点A的坐标为(3,0),点B的坐标为(4,
8、0),连接AC,BC动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒连接PQ(1)填空:b ,c ;(2)在点P,Q运动过程中,APQ可能是直角三角形吗?请说明理由;(3)点M在抛物线上,且AOM的面积与AOC的面积相等,求出点M的坐标15如图1,抛物线yax2+bx+2与x轴交于A(5,0)B(1,0)两点,与y轴交于C点,若点P是抛物线上的动点,设点P的横坐标为t(1t2),过点P作PQx轴于点Q作PMx轴交抛物线于另一点M,以PQ
9、,PM为邻边作矩形PQNM,矩形PQNM的周长为l(1)求抛物线的函数表达式;(2)求1与t的函数关系式,并求l的最大值;(3)当l12时连接对角线PN,在线段PN上取一点D(点D与点P,N不重合),连接DM,过点D作DEDM交x轴于点E的值为 ;是否存在点D使DEN是等腰三角形若存在请直接写出符合条件的点D的坐标;若不存在请说明理由16如图,已知二次函数yax2+x+c(a0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC(1)求出二次函数表达式;(2)若点N在线段BC上运动(不与点B、C重合),过点N作NMAC,交AB于点M,当AMN面积最大时,求
10、此时点N的坐标;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请求出此时点N的坐标17如图1,二次函数y=ax2+bx-2 (a0)的图象与x轴交于A(-4, 0)、 B(1, 0)两点,与y轴交于点C(1)求这个二次函数的表达式:(2)点M在该抛物线的对称轴上,当ACM是直角三角形时,求点M的坐标;(3)如图2,点D在y轴上,且CD=OA,连接AD,点E、F分别是线段OA, AD上的动点,求EF+OF的最小值18如图,已知抛物线经过、两点,(1)求抛物线的解析式;(2)阅读理解:在同一平面直角坐标系中,直线(、为常数,且),直线(、为常数,且),若,则解决问题:若直
11、线与直线互相垂直,求的值;在抛物线上是否存在点,使得PAB是以为直角边的直角三角形?若存在,请求出点的坐标;若不存在,请说明理由;(3)点是抛物线上一动点,且在直线的上方(不与、重合),求点到直线 距离的最大值19如图,在平面直角坐标系中,一次函数yx+2的图象交x轴于点P,二次函数yx2+x+m的图象与x轴的交点为(x1,0)、(x2,0),且+17(1)求二次函数的解析式和该二次函数图象的顶点的坐标(2)若二次函数yx2+x+m的图象与一次函数yx+2的图象交于A、B两点(点A在点B的左侧),在x轴上是否存在点M,使得MAB是以ABM为直角的直角三角形?若存在,请求出点M的坐标;若不存在,
12、请说明理由20如图,直线yx+3与x轴、y轴分别交于B、C两点,经过B、C两点的抛物线yx2+bx+c与x轴的另一个交点为A,顶点为P(1)求该抛物线的解析式;(2)当0x3时,在抛物线上求一点E,使CBE的面积有最大值;(3)在该抛物线的对称轴上是否存在点M,使以C、P、M为顶点的三角形为等腰三角形?若存在,请写出所符合条件的点M的坐标;若不存在,请说明理由参考答案1(1)y = x2-2x-3,(2)D1(4,-1),D2(3,- 4),D3 ( 2,- 2 )【分析】(1)设解析式为y=a(x-3)(x+1),把点C(0,-3)代入即可求出解析式;(2)根据题意作出图形,根据等腰直角三角
13、形的性质即可写出坐标.【解析】(1)设解析式为y=a(x-3)(x+1),把点C(0,-3)代入得-3=a(-3)1解得a=1,解析式为y= x2-2x-3,(2)如图所示,对称轴为x=1,过D1作D1Hx轴,CPD为等腰直角三角形,OPCHD1P,PH=OC=3,HD1=OP=1,D1(4,-1)过点D2Fy轴,同理OPCFCD2,FD2=3,CF=1,故D2(3,- 4)由图可知CD1与PD2交于D3,此时PD3CD3,且PD3=CD3,PC=,PD3=CD3=故D3 ( 2,- 2 ) D1(4,-1),D2(3,- 4),D3 ( 2,- 2 ) 使CPD 为等腰直角三角形.【点评】此
14、题主要考察二次函数与等腰直角三角形结合的题,解题的关键是熟知二次函数的图像与性质及等腰直角三角形的性质.2(1)A(-1,0),B(3,0),C(0,);(2)见解析;(3) (2, )或C(-4,-7).【分析】(1)抛物线与x轴相交,则y=0;与y轴相交,则x=0,计算结果即可(2)根据三个点的坐标画图即可观察得到(3)点P在抛物线上,且PBA=60,画图求解即可.【解析】抛物线与x轴相交,则y=0;与y轴相交,则x=0,A(-1,0),B(3,0),C(0,).(2)根据三点坐标,画图可知,ABC是直角三角形(3)设P(m,=- (m-3),过点P作PHx轴于点H,PBA=60,PH=B
15、H, - (m-3)=(3-m)或 (m-3)=(3-m),解之,得m=2,或-4,点P 的坐标为(2, )或(-4,-7)【点评】此题重点考察学生对二次函数的理解,掌握二次函数的性质和解法是解题的关键.3(1)yx27x+1;(2)ABC为直角三角形理由见解析;(3)符合条件的Q的坐标为(4,1),(24,1),(0,7),(0,13)【分析】(1)先利用一次函数解析式得到A(8,9),然后利用待定系数法求抛物线解析式;(2)先利用抛物线解析式确定C(6,5),作AMy轴于M,CNy轴于N,如图,证明ABM和BNC都是等腰直角三角形得到MBA45,NBC45,AB8 ,BN6,从而得到ABC
16、90,所以ABC为直角三角形;(3)利用勾股定理计算出AC10 ,根据直角三角形内切圆半径的计算公式得到RtABC的内切圆的半径2 ,设ABC的内心为I,过A作AI的垂线交直线BI于P,交y轴于Q,AI交y轴于G,如图,则AI、BI为角平分线,BIy轴,PQ为ABC的外角平分线,易得y轴为ABC的外角平分线,根据角平分线的性质可判断点P、I、Q、G到直线AB、BC、AC距离相等,由于BI24,则I(4,1),接着利用待定系数法求出直线AI的解析式为y2x7,直线AP的解析式为yx+13,然后分别求出P、Q、G的坐标即可【解析】解:(1)把A(m,9)代入yx+1得m+19,解得m8,则A(8,
17、9),把A(8,9),B(0,1)代入yx2+bx+c得,解得,抛物线解析式为yx27x+1;故答案为yx27x+1;(2)ABC为直角三角形理由如下:当x6时,yx27x+13642+15,则C(6,5),作AMy轴于M,CNy轴于N,如图,B(0,1),A(8,9),C(6,5),BMAM8,BNCN6,ABM和BNC都是等腰直角三角形,MBA45,NBC45,AB8,BN6,ABC90,ABC为直角三角形;(3)AB8,BN6,AC10,RtABC的内切圆的半径,设ABC的内心为I,过A作AI的垂线交直线BI于P,交y轴于Q,AI交y轴于G,如图,I为ABC的内心,AI、BI为角平分线,
18、BIy轴,而AIPQ,PQ为ABC的外角平分线,易得y轴为ABC的外角平分线,点I、P、Q、G为ABC的内角平分线或外角平分线的交点,它们到直线AB、BC、AC距离相等,BI24,而BIy轴,I(4,1),设直线AI的解析式为ykx+n,则,解得,直线AI的解析式为y2x7,当x0时,y2x77,则G(0,7);设直线AP的解析式为yx+p,把A(8,9)代入得4+n9,解得n13,直线AP的解析式为yx+13,当y1时,x+131,则P(24,1)当x0时,yx+1313,则Q(0,13),综上所述,符合条件的Q的坐标为(4,1),(24,1),(0,7),(0,13)【点评】本题考查了二次
19、函数的综合题:熟练掌握二次函数图象上点的坐标特征、角平分线的性质和三角形内心的性质;会利用待定系数法求函数解析式;理解坐标与图形性质是解题的关键4(1)m=2,A(3,0),B(1,0);(2)P为AO中点时,OE的最大值为;(3)存在,见解析.【分析】(1)利用二次函数的定义求出m的知,再令y=0即可得出点A,B坐标;(2)设PA=t(-3t0),则OP=3-t,如图1,证明DAPPOE,利用相似比得到OE=- ,然后利用二次函数的性质解决问题;(3)讨论:当点P在y轴左侧时,如图2,DE交AB于G点,证明DAPPOE得到PO=AD=4,则PA=1,OE=1,再利用平行线分线段成比例定理计算
20、出AG= ,则计算SDAG即可得到此时PED与正方形ABCD重叠部分的面积;当P点在y轴右侧时,如图3,DE交AB于G点,DP与BC相交于Q,同理可得DAPPOE,则PO=AD=4,PA=7,OE=7,再利用平行线分线段成比例定理计算出OG和BQ,然后计算S四边形DGBQ得到此时PED与正方形ABCD重叠部分的面积当点P和点A重合时,点E和和点O重合,此时,PED不是等腰三角形【解析】(1)二次函数y=(m1)6x+9,m2+m=2且m10,m=2,二次函数解析式为y=3x26x+9,令y=0,0=3x26x+9,x=1或x=3,A(3,0),B(1,0);(2)设PA=t(3t0),则OP=
21、3t,DPPE,DPA=PEO,DAPPOE,即,OE=t2+t=(t)2+,当t=时,OE有最大值,即P为AO中点时,OE的最大值为;(3)存在当点P在y轴左侧时,如图1,DE交AB于G点,PD=PE,DPE=90,DAPPOE,PO=AD=4,PA=1,OE=1,ADOE,=4,AG=,SDAG=4=,P点坐标为(4,0),此时PED与正方形ABCD重叠部分的面积为;当P点在y轴右侧时,如图2,DE交AB于G点,DP与BC相交于Q,同理可得DAPPOE,PO=AD=4,PA=7,OE=7,ADOE,OG=,同理可得BQ=,S四边形DGBQ=(+1)4+4=当点P的坐标为(4,0)时,此时P
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年中 数学 专题 训练 二次 函数 特殊 三角形 答案 解析
链接地址:https://www.77wenku.com/p-228008.html