2023年北京市中考数学一轮复习专题训练22:图形的相似(含答案解析)
《2023年北京市中考数学一轮复习专题训练22:图形的相似(含答案解析)》由会员分享,可在线阅读,更多相关《2023年北京市中考数学一轮复习专题训练22:图形的相似(含答案解析)(27页珍藏版)》请在七七文库上搜索。
1、 学科网(北京)股份有限公司 专题专题 22 22 图形的相似图形的相似 一、单选题一、单选题 1如图,身高 1.6 米的小慧同学从一盏路灯下的 B 处向前走了 8 米到达点 C 处时,发现自己在地面上的影子 CE 的长是 2 米,则路灯 AB 的高为( ) A5 米 B6.4 米 C8 米 D10 米 2如图,D,E 分别是ABC 的边 AB,AC 的中点,下列结论错误的是( ) ADEBC BDE12BC CADE 的周长是ABC 周长的一半 DSADE12SABC 3如果一个矩形的宽与长的比等于黄金数512(约为 0.618) , 就称这个矩形为黄金矩形 若矩形 ABCD为黄金矩形,宽
2、AD51,则长 AB 为( ) A1 B1 C2 D2 4下列各组线段中,成比例的是( ) A1,2,2,4 B1,2,3,4 C3,5,9,13 D1,2,2,3 5 (2022 九下 北京市开学考)如图,阳光从教室的窗户射入室内,窗户框 AB 在地面上的影子长 DE1.8m,窗户下沿到地面的距离 BC1m,EC1.2m,那么窗户的高 AB 为( ) A1.5m B1.6m C1.86m D2.16m 学科网(北京)股份有限公司 6如果 4m=5n(n0) ,那么下列比例式成立的是( ) A4=5 B5=4 C=45 D4=5 7 (2021 九上 石景山期末)若2 = 5( 0),则下列比
3、例式正确的是( ) A=52 B5=2 C=25 D=25 8如图所示的网格是正方形网格,A,B,C,D,E,F 是网格线的交点,则ABC 的面积与DEF 的面积比为( ) A12 B14 C2 D4 9 (2021 九上 平谷期末)如果 3x=5y,则下列比例式成立的是( ) A=35 B=53 C3=5 D3=5 10 (2021 九上 顺义期末)如果3 = 4( 0) ,那么下列比例式中正确的是( ) A=34 B=43 C4=3 D3=4 二、填空题二、填空题 11 (2021 九上 门头沟期末)如果两个相似三角形的相似比是1:3,那么这两个相似三角形的周长比是 12如图, 在ABC中
4、, DE分别与AB、 AC相交于点D、 E, 且DEBC, 如果=23, 那么= 13 (2021 九上 门头沟期末)已知23,那么+ 14 (2021 九上 石景山期末)如图, 的高 AD, BE 相交于点 O, 写出一个与 相似的三角形,这个三角形可以是 学科网(北京)股份有限公司 15 (2021 九上 通州期末)如图,在测量旗杆高度的数学活动中,某同学在地面放了一个平面镜 C,然后向后退,直到他刚好在镜子中看到旗杆的顶部 A如果他的眼睛到地面的距离 ED1.6m,同时量得他到平面镜 C 的距离 DC2m,平面镜 C 到旗杆的底部 B 的距离 CB15m,那么旗杆高度 AB m 16 (
5、2021 九上 顺义期末)如图,在中,D,E 分别是边,的中点,则与的周长之比等于 . 17 (2021 九上 平谷期末)如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为 2m,旗杆底部与平面镜的水平距离为 12m若小明的眼睛与地面的距离为 1.5m,则旗杆的高度为 (单位:m) 18 (2021 九上 石景山期末)有一块三角形的草坪,其中一边的长为 10m在这块草坪的图纸上,这条边的长为 5cm已知图纸上的三角形的周长为 15cm,则这块草坪的周长为 m 19(2021九上 通州期末)如图, ABC的两条中线BE, CD交于点M 某
6、同学得出以下结论: ;ADEABC;=14;=13其中结论正确的是: (只填序号) 学科网(北京)股份有限公司 20 (2022 北京市)如图,在矩形中,若 = 3, = 5,=14,则的长为 三、综合题三、综合题 21 (2022 朝阳模拟)已知等腰直角ABC 中, BAC90 , ABAC, 以 A 为顶点作等腰直角ADE,其中 ADDE (1)如图 1,点 E 在 BA 的延长线上,连接 BD,若DBC30 ,若 AB6,求 BD 的值; (2)将等腰直角ADE 绕点 A 顺时针旋转至图 2,连接 BE,CE,过点 D 作 DFCE 交 CE 的延长线于 F,交 BE 于 M,求证:BM
7、12BE; (3)如图 3,等腰直角ADE 的边长和位置发生变化的过程中,DE 边始终经过 BC 的中点 G,连接 BE,N 为 BE 中点,连接 AN,当 AB6 且 AN 最长时,连接 NG 并延长交 AC 于点 K,请直接写出ANK 的面积 22感知: 数学课上, 老师给出了一个模型: 如图1, 点A在直线上, 且 = = = 90,像这种一条直线上的三个顶点含有三个相等的角的模型我们把它称为“一线三等角”模型 学科网(北京)股份有限公司 (1)应用: 如图 2, 中, = 90, = ,直线经过点 C,过 A 作 于点 D,过 B作 于点 E求证: (2) 如图 3, 在中, E 为边
8、上的一点, F 为边上的一点 若 = , = 10, = 6,求的值 23 (2022 门头沟模拟)如图, 是 的直径,点 D、E 在 上, = 2 ,过点 E作 的切线 ,交 的延长线于 C (1)求证: = ; (2)如果 的半径为 5. = 2 求 的长 24 (2021 九上 昌平期末)如图,O 是ABC 的外接圆,AB 是O 的直径,ABCD 于点 E,P 是AB 延长线上一点,且BCPBCD (1)求证:CP 是O 的切线; (2)连接 DO 并延长,交 AC 于点 F,交O 于点 G,连接 GC 若O 的半径为 5,OE3,求 GC和 OF 的长 学科网(北京)股份有限公司 25
9、 (2022 平谷模拟)如图,AB 是O 的直径,C 是O 上一点,过 C 作O 的切线交 AB 的延长线于点 D,连接 AC、BC,过 O 作 OFAC,交 BC 于 G,交 DC 于 F (1)求证:DCBDOF; (2)若 tanA 12 ,BC4,求 OF、DF 的长 26 (2021 九上 顺义期末)如图,ABC 内接于O,AB 是O 的直径,作BCDA,CD 与 AB的延长线交于点 D,DEAC,交 AC 的延长线于点 E (1)求证:CD 是O 的切线; (2)若 CE2,DE4,求 AC 的长 27 (2022 朝阳模拟)如图,RtABC 和 RtBDE 重叠放置在一起,ABC
10、DBE90 ,且 AB2BC,BD2BE (1)观察猜想:图中线段 AD 与 CE 的数量关系是 ,位置关系是 ; (2)探究证明:把BDE 绕点 B 顺时针旋转到图的位置,连接 AD,CE,判断线段 AD 与 CE的数量关系和位置关系如何,并说明理由; (3)拓展延伸:若 BC5,BE1,当旋转角 ACB 时,请直接写出线段 AD 的长度 28 (2022 海淀模拟)如图, 是 的外接圆,AB 是 的直径,点 D 为的中点, 的切 学科网(北京)股份有限公司 线 DE 交 OC 延长线于点 E (1)求证:; (2)连接 BD 交 AC 于点 P,若 = 8,cos =45,求 DE 和 B
11、P 的长 29 (2022 顺义模拟)如图,在四边形 ABCD 中, , ,垂足为 O,过点 D 作 BD 的垂线交 BC 的延长线于点 E (1)求证:四边形 ACED 是平行四边形; (2)若 AC=4,AD=2,cos =45,求 BC 的长 30如图,将一个 与正方形叠放在一起,并使其直角顶点 P 落在线段上(不与 C,D两点重合) ,斜边的一部分与线段重合 (1)图中与 相似的三角形共有 个,分别是 ; (2)请选择第(1)问答案中的任意一个三角形,完成该三角形与 相似的证明 学科网(北京)股份有限公司 答案解析部分答案解析部分 1 【答案】C 【解析】【解答】解:由题意知,CE2
12、米,CD1.6 米,BC8 米,CD/AB, 则 BEBC+CE10 米, CD/AB, ECDEBA ,即1.6210, 解得 AB8(米) ,即路灯的高 AB 为 8 米 故答案为:C 【分析】先证明ECDEBA,再利用相似三角形的性质可得,再将数据代入计算即可。 2 【答案】D 【解析】【解答】解:D、E 是 AB、AC 的中点, DE 为ABC 的中位线, DEBC 且 =12,选项 A、B 不符合题意; ABCADE, =12, = + + =12 +12 +12 =12,选项 C 不符合题意; 由中位线的性质可得:设ADE 中 DE 边上的高为 h,则ABC 边上的高为 2h, =
13、12 =1212 12 2 =1412 2 =14,选项 D 符合题意; 故答案为:D 【分析】易得 DE 为ABC 的中位线,可得 DEBC 且 =12,据此判断 A、B;利用平行线可证ABCADE,根据相似三角形的面积比等于相似比的平方,周长比等于相似比即可判断 C、D. 3 【答案】C 【解析】【解答】解:黄金矩形的宽与长的比等于黄金数512, =512, = (5 1) 512= 2 故答案为:C 学科网(北京)股份有限公司 【分析】根据黄金矩形的定义可得=512,再求出 AB 的长即可。 4 【答案】A 【解析】【解答】解:A、1 4=2 2,符合题意; B、1423,不符合题意;
14、C、31359,不符合题意; D、1322,不符合题意 故答案为:A 【分析】根据成比例线段的判断方法逐项判断即可。 5 【答案】A 【解析】【解答】BEAD, BCEACD, =,即 +=+, BC=1,DE=1.8,EC=1.2 1+1=1.21.8+1.2 1.2AB=1.8, AB=1.5m 故答案为:A 【分析】先证明BCEACD,再利用相似三角形的性质可得 =,即 +=+,再将数据代入计算可得 1+1=1.21.8+1.2,最后求出 AB 的长即可。 6 【答案】B 【解析】【解答】解:A. 由4=5,可得5 = 4,不符合题意; B. 由5=4,可得4 = 5,符合题意; C.
15、由=45,可得5 = 4,不符合题意; D. 由4=5,可得 = 4 5,不符合题意; 故答案为:B 【分析】根据比例式的性质逐项判断即可。 7 【答案】C 学科网(北京)股份有限公司 【解析】【解答】解:A、=52,得2 = 5,A 不符合题意; B、 5=2,得 = 10,B 不符合题意; C、=25,得5 = 2,C 符合题意; D、=25,得5 = 2,D 不符合题意; 故答案为:C 【分析】根据比例式的性质逐项判断即可。 8 【答案】B 【解析】【解答】解:如图,设正方形网格中小方格的边长为 1, 则有 AB=1, BC=12+ 22=5, AC=12+ 12=2, DE=2, EF
16、=22+ 22= 22, DF=22+ 42= 25, =12, ABCEDF, SABC:SDEF=(12)2=14, 故答案为:B 【分析】先证明ABCEDF,再利用相似三角形的性质可得 SABC:SDEF=(12)2=14。 9 【答案】B 【解析】【解答】解:A、由=35得 5x=3y,故本选项不符合题意; B、由=53得 3x=5y,故本选项符合题意; C、由3=5得 5x=3y,故本选项不符合题意; D、由3=5得 5x=3y,故本选项不符合题意; 故答案为:B 【分析】根据比例式的性质逐项判断即可。 10 【答案】C 【解析】【解答】A、由比例的性质,得 4x=3y 与 3x=4
17、y 不一致,故 A 不符合题意; B、由比例的性质,得 4x=3y 与 3x=4y 不一致,故 B 不符合题意; C、由比例的性质,得 3x=4y 与 3x=4y 一致,故 C 符合题意; D、由比例的性质,得 4x=3y 与 3x=4y 不一致,故 D 不符合题意; 学科网(北京)股份有限公司 故答案为:C 【分析】根据比例式的性质逐项判断即可。 11 【答案】1:3 【解析】【解答】解:两个相似三角形的相似比是 1:3 这两个相似三角形的周长比是 1:3 故答案为:1:3 【分析】根据相似三角形的性质:相似三角形的周长之比等于相似比即可得到答案。 12 【答案】25 【解析】=23,=+=
18、25,DEBC,=25,故答案为 25. 【分析】先求出=+=25,再利用平行线分线段成比例的性质可得=25,从而得解。 13 【答案】52 【解析】【解答】解:23, x23y, +23+2352 故答案为:52 【分析】根据23可得 x23y,再代入+计算即可。 14 【答案】(答案不唯一) 【解析】【解答】解:本题答案不唯一; 与相似的三角形有:, 选择求证: 证明: 的高,交于点, = = 90 = , , 故答案是: 【分析】根据相似三角形的判定方法求解即可。 学科网(北京)股份有限公司 15 【答案】12 【解析】【解答】解:ECD=ACB ABCEDC =1.62 AB=BC 0
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 北京市 中考 数学 一轮 复习 专题 训练 22 图形 相似 答案 解析
链接地址:https://www.77wenku.com/p-228108.html