2022年九年级中考数学专题训练:实际问题与二次函数(含答案解析)
《2022年九年级中考数学专题训练:实际问题与二次函数(含答案解析)》由会员分享,可在线阅读,更多相关《2022年九年级中考数学专题训练:实际问题与二次函数(含答案解析)(39页珍藏版)》请在七七文库上搜索。
1、中考专题训练实际问题与二次函数1某市政府加大各部门和单位对口扶贫力度某单位的帮扶对象种植的农产品在某月,(按天计)的第天(为正整数)的销售价格(元千克)关于的函数关系式为销售量y(千克)与之间的关系如图所示(1)求与之间的函数关系式为_;(2)若该农产品当月的销售额最大,最大销售额是_.(销售额=销售量销售价格)二、解答题2某商店代销一批季节性服装,每套代销成本40元,第一个月每套销售定价为60元时,可售出300套应市场变化需上调第一个月的销售价,预计销售定价每增加1元,销售量将减少10套(1)若设第二个月的销售定价每套增加元,填写表格:时间第一个月第二个月销售定价元套60_ 销售量套300_
2、 (2)若商店预计要在第二个月的销售中获利4000元,则第二个月销售定价每套多少元?(3)若要使第二个月利润达到最大,应定价为多少?此时第二个月的最大利润是多少?3我市某苗木种植基地尝试用单价随天数而变化的销售模式销售某种果苗,利用天时间销售一种成本为元株的果苗,售后经过统计得到此果苗,单日销售量株与第天为整数满足关系式:,销售单价元株与之间的函数关系为(1)计算第几天该果苗单价为元株?(2)求该基地销售这种果苗天里单日所获利润元关于天的函数关系式;(3)“吃水不忘挖井人”,为回馈本地居民,基地负责人决定将这天中,其中获利最多的那天的利润全部捐出,进行“精准扶贫”试问:基地负责人这次为“精准扶
3、贫”捐赠多少钱?4为落实国家精准扶贫政策,我市助农办决定帮助扶贫对象推销当地特色农产品,该农产品成本价为每千克18元,售价不低于成本,且不超过30元/千克,根据市场的销售情况,发现该农产品一天的销售量y(千克)与该天的售价x(元/千克)满足如表所示的一次函数关系 销售量y(千克)600560520480售价x(元/千克)18202224(1)请利用所学过的函数知识求该农产品一天的销售量y(千克)与该天的售价x(元/千克)之间的函数关系,并写出x的取值范围 (2)如果某天销售这种农产品获利4000元,那么这天该农产品的售价为多少元/千克?(3)这种农产品售价定为多少元/千克时,当天获利最大?最大
4、利润为多少?5小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆,已知2盆盆景与1盆花卉的利润共300元,1盆盆景与3盆花卉的利润共200元(1)求1盆盆景和1盆花卉的利润各为多少元?(2)调研发现:盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆;花卉的平均每盆利润始终不变小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后利润分别为W1,W2(单位:元)求W1,W2关于x的函数关系式;当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少元?6某乒乓球馆使用发球机进行辅助训练,出球口A位于桌面BC左上方,桌面BC的长为
5、2.74m过点A作OABC,垂足为O,OB0.03m,以点O为原点,以直线BC为x轴,OA所在直线为y轴,建立平面直角坐标系,如图所示,从出球口A发出的乒乓球运动路线为抛物线的一部分L,设乒乓球与出球口A的水平距离为x(m),到桌面的高度为y(m),运行时间为t(s),在桌面上的落点为D,经测试,得到如下部分数据:t(s)00.20.40.60.8x(m)00.511.52y(m)0.250.40.450.40.25(1)当t s时,乒乓球达到最大高度;猜想y与x之间是否存在二次函数关系,如果存在,求出函数关系式;如果不存在,请说明理由;(2)桌面正中间位置安装的球网GH的高度为0.15m,求
6、乒乓球从出球口A发出经过多长时间位于球网正上方,此时乒乓球到球网顶端H的距离约为多少?(结果保留两位小数)(3)乒乓球落在点D后随即弹起,沿抛物线:y0.5(xp)(x3.5)的路线运动,小明拿球拍EF与桌面夹角为60接球,球拍中心线EF长为0.16m,下沿E在x轴上,假设抛物线L,与EF在同一平面内,且乒乓球落在EF上(含端点,点E在点C右侧),求p的值,并直接写出EF到桌边的距离CE的取值范围7小明将小球从斜坡O点处抛出,球的抛出路线可以用二次函数刻画,斜坡可以用一次函数刻画,如图建立直角坐标系,小球能达到的最高点的坐标(1)请求出b和n的值;(2)小球在斜坡上的落点为M,求点M的坐标;(
7、3)点P是小球从起点到落点抛物线上的动点,连接,当点P的坐标为何值时?的面积最大,最大面积是多少?8如图,排球运动场的场地长18m,球网高度2.24m,球网在场地中央,距离球场左、右边界均为9m一名球员在场地左侧边界练习发球,排球的飞行路线可以看作是对称轴垂直于水平面的抛物线的一部分在球运行时,将球与场地左边界的水平距离记为x(米),与地面的高度记为y(米),经多次测试后,得到如下数据:x(米)0124678y(米)22.152.282.442.52.492.44(1)在网格中建立适当的平面直角坐标系,根据已知数据描点,并用平滑的曲线连接;(2)击球点的高度为_米,排球飞行过程中可达到的最大高
8、度为_米;(3)求出y与x的函数解析式;(4)判断排球能否过球网,并说明理由9鹰眼系统能够追踪、记录和预测球的轨迹,如图分别为足球比赛中某一时刻的鹰眼系统预测画面(如图1)和截面示意图(如图2),攻球员位于点O,守门员位于点A,OA的延长线与球门线交于点B,且点A,B均在足球轨迹正下方,足球的飞行轨迹可看成抛物线已知OB=28m,AB=8m,足球飞行的水平速度为15m/s,水平距离s(水平距离=水平速度时间)与离地高度h的鹰眼数据如下表:s/m912151821h/m4.24.854.84.2(1)根据表中数据预测足球落地时,s= m;(2)求h关于s 的函数解析式;(3)守门员在攻球员射门瞬
9、间就作出防守反应,当守门员位于足球正下方时,足球离地高度不大于守门员的最大防守高度视为防守成功已知守门员面对足球后退过程中速度为2.5m/s,最大防守高度为2.5m;背对足球向球门前进过程中最大防守高度为1.8m若守门员选择面对足球后退,能否成功防守?试计算加以说明;若守门员背对足球向球门前进并成功防守,求此过程守门员的最小速度10图1是运动员训练使用的带有乒乓球发射机的乒乓球台示意图,水平台面的长和宽分别为和,中间球网高度为,发射机安装于台面左侧边缘,能以不同速度向右侧不同方向水平发射乒乓球,发射点距台面高度为乒乓球(看成点)在发射点P获得水平速度v(单位:)后,从发射点向右下飞向台面,点Q
10、是下落路线的某位置,忽略空气阻力,实验表明:P,Q的竖直距离h(单位:m)与飞出时间t(单位:s)的平方成正比,且当时,;P,Q的水平距离是(单位:m),如图2(1)设用t表示点Q的横坐标x和纵坐标y,并求出y与x的函数关系式;(不必写x的取值范围)(2)在(1)的条件下,若发球机垂直于底线向正前方发球,根据(1)中的函数关系式及题目中的数据,判断这次发球能否过网?是否出界?并说明理由;若球过网后的落点是右侧台面内的点M(如图3,点M距底线,边线),问发球点O在底线上的哪个位置?(参考数据:)(3)将乒乓球发射机安装于台面左侧底线的中点,若乒乓球的发射速度v在某范围内,通过选择合适的方向,就能
11、使乒乓球落到球网右侧台面上(不接触中网和底线),请直接写出v的取值范围(结果保留根号)11某公园在人工湖里安装一个喷泉,在湖心处竖直安装一根水管,在水管的顶端安一个喷水头,水柱从喷水头喷出到落于湖面的路径形状可以看作是抛物线的一部分,若记水柱上某一位置与水管的水平距离为米,与湖面的垂直高度为米,下面的表中记录了与的五组数据:米米根据上述信息,解决以下问题:(1)在网格中建立适当的平面直角坐标系,并根据表中所给数据画出表示与函数关系的图象;(2)若水柱最高点距离湖面的高度为米,则_;(3)现公园想通过喷泉设立新的游玩项目,准备通过只调节水管露出湖面的高度,使得游船能从水柱下方通过,如图所示,为避
12、免游船被喷泉淋到,要求游船从水柱下方中间通过时,顶棚上任意一点到水柱的竖直距离均不小于米已知游船顶棚宽度为米,顶棚到湖面的高度为米,那么公园应将水管露出湖面的高度喷水头忽略不计至少调节到多少米才能符合要求?请通过计算说明理由结果保留一位小数12跳台滑雪是冬季奥运会的比赛项目如图,运动员通过助滑道后在点A处腾空,在空中沿抛物线飞行,直至落在着陆坡BC上的点P处腾空点A到地面OB的距离OA为70 m,坡高OC为60 m,着陆坡BC的坡度(即tan )为3:4,以O为原点,OB所在直线为x轴,OA所在直线为y轴,建立如图所示的平面直角坐标系已知这段抛物线经过点(4,75),(8,78)(1)求这段抛
13、物线表示的二次函数表达式;(2)在空中飞行过程中,求运动员到坡面BC竖直方向上的最大距离;(3)落点P与坡顶C之间的距离为 m13某社区文化广场修建了一个人工喷泉,人工喷泉有一个竖直的喷水枪AB,喷水口为A,喷水口A距地面2m,喷出水流的轨迹是抛物线水流最高点P到喷水枪AB所在直线的距离为1m,水流落地点C距离喷水枪底部B的距离为3m请解决以下问题:(1)如图,以B为原点,BC所在的直线为x轴,AB所在的直线为y轴,建立平面直角坐标系,则点A的坐标是_,点C的坐标是_,水流轨迹抛物线的对称轴是_(2)求出水柱最高点P到地面的距离(3)在线段BC上到喷水枪AB所在直线的距离为2m处放置一物体,为
14、避免物体被水流淋到,物体的高度应小于多少米?请说明理由14如图,在一次学校组织的社会实践活动中,小龙看到农田上安装了很多灌溉喷枪,喷枪喷出的水流轨迹是抛物线,他发现这种喷枪射程是可调节的,且喷射的水流越高射程越远,于是他从该农田的技术部门得到了这种喷枪的一个数据表,水流的最高点与喷枪的水平距离记为,水流的最高点到地面的距离记为与的几组对应值如下表:(单位:)01234(单位:)12(1)该喷枪的出水口到地面的距离为_;(2)在平面直角坐标系中,描出表中各组数值所对应的点,并画出与的函数图像;(3)结合(2)中的图像,估算当水流的最高点与喷枪的水平距离为时,水流的最高点到地面的距离为_(精确到)
15、根据估算结果,计算此时水流的射程约为_(精确到)15某景观公园内人工湖里有一组喷泉,水柱从垂直于湖面的喷水枪喷出,水柱落于湖面的路径形状是一条曲线现有一个垂直于湖面的喷水枪,在距喷水枪水平距离为x米处,水柱距离湖面高度为y米经测量得到如下数据:(米)0123456(米)2.502.883.002.872.501.881.011请解决以下问题:(1)如下图,在平面直角坐标系xOy中,描出了上表中y与x各对对应值为坐标的点请根据描出的点,画出这条曲线;(2)结合所画曲线回答:水柱的最高点距离湖面约_米;水柱在湖面上的落点距喷水枪的水平距离约为_米;(3)若一条游船宽3米,顶棚到湖面的高度2米,为了
16、保证游客有良好的观光体验,游船需从喷泉水柱下通过,如果不计其他因素,根据图象判断_(填“能”或“不能”)避免游船被喷泉喷到16图是某跳台滑雪训练场的横截面示意图,取水平线为x轴,过跳台终点A作水平线的垂线为y轴,建立平面直角坐标系图中的抛物线:近似表示滑雪场地上的一座小山坡,某运动员从点O正上方4米处的A点滑出,滑出后沿一段抛物线:运动(1)当运动员运动到离A处的水平距离为4米时,离水平线的高度为8米,求抛物线的函数解析式(不要求写出自变量x的取值范围);(2)在(1)的条件下,当运动员运动水平线的水平距离为多少米时,运动员与小山坡的竖直距离为1米?(3)当运动员运动到坡顶正上方,且与坡顶距离
17、超过3米时,求b的取值范围17新型建材(即新型建筑材料)是区别于传统的砖瓦、灰砂石等建材的建筑材料新品种,行业内将新型建筑材料的范围作了明确的界定,即新型建筑材料主要包括新型墙体材料、新型防水保温隔热密封材料和装饰装修材料三大类,某开发商承建一精密实验室,要求全部使用新型建筑材料,经调查发现:新型建筑材料总成本包括装饰装修材料成本、新型墙体材料成本和新型防水保温隔热密封材料成本,其中装饰装修材料成本固定不变为100万元,新型墙体材料成本与建筑面积x(m2)成正比,新型防水保温隔热密封材料成本与建筑面积x(m2)的平方成正比,在建筑过程中,设新型建筑材料总成本为y(万元),获得如下数据:x(单位
18、:m2)2050y(单位:万元)240600(1)求新型建筑材料总成本为y(万元)与建筑面积x(m2)的函数表达式;(2)在建筑过型中,开发商测算出此时每平方米的平均成本为12万元,求此时完成的建筑面积;(3)设建设该厂房每平方米的毛利润为Q(万元)且有Qkx+b(k0),已知当x50时,Q为12.5万元,且此时开发商总纯利润W最大,求k、b的值(纯利润毛利润成本)18如图1是城市平直道路,道路限速60km/h,A路口停车线和B路口停车线之间相距S400m,A、B两路口各有一个红绿灯在停车线后面停着一辆汽车,该汽车的车头恰好与停车线平齐,已知汽车启动后开始加速,加速后汽车行驶的路程S、速度v与
19、时间t的关系分别可以用二次函数和一次函数表示,其图象如图2、3所示某时刻A路口绿灯亮起,该汽车立即启动(车身长忽略不计)(1)求该汽车从停车线出发加速到限速所需的时间(2)求该汽车最快需要多少时间可以通过停车线(3)若A路口绿灯亮起29s后B路口绿灯亮起,且B路口绿灯的持续时间为23s该汽车先加速行驶,然后一直匀速行驶若该汽车在B路口绿灯期间能顺利通过停车线,求该汽车匀速行驶过程中速度的取值范围19一辆校车在笔直的公路上正常行驶,发现前方30米处有一辆洒水车沿相同方向缓慢匀速行驶,校车司机随即开始刹车减速,减速后校车行驶路程s(米)与时间t(秒)满足关系式s=at2+bt,而减速后校车速度v(
20、米/秒)与时间t(秒)可用一次函数表示,相关信息如下列图表:时间t(秒)012路程s(米)014.528(1)求a、b的值;(2)当校车减速后直至速度减至10米/秒时,它行驶的路程是多少米?(3)若洒水车的速度是8米/秒,校车减速后,两辆车何时距离最近,最近距离是多少米?20习总书记强调,实行垃圾分类,关系广大人民群众生活环境,关系节约使用资源,也是社会文明水平的一个重要体现为改善城市生态环境,某市决定从6月1日起,在全市实行生活垃圾分类处理,某街道计划建造垃圾初级处理点20个,解决垃圾投放问题有A、B两种类型垃圾处理点,其占地面积、可供使用居民楼幢数及造价见表:类型占地面积可供使用幢数造价(
21、万元)A15181.5B20302.1(1)已知该街道可供建造垃圾初级处理点的占地面积不超过370m2,如何分配A、B两种类型垃圾处理点的数量,才能够满足该街道490幢居民楼的垃圾投放需求,且使得建造方案最省钱?(2)当建造方案最省钱时,经测算,该街道垃圾月处理成本y(元)与月处理量x(吨)之间的函数关系可以近似的表示为:,若每个B型处理点的垃圾月处理量是A型处理点的1.2倍,该街道建造的每个A型处理点每月处理量为多少吨时,才能使该街道每吨垃圾的月处理成本最低?(精确到0.1)参考答案1 【分析】根据函数图象中的数据,可以得到与之间的函数关系式,并写出的取值范围;根据题意和中的结果,可以得到销
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 九年级 中考 数学 专题 训练 实际问题 二次 函数 答案 解析
链接地址:https://www.77wenku.com/p-229012.html