贵州省黔东南州2021-2022学年九年级上期末数学试卷(含答案解析)
《贵州省黔东南州2021-2022学年九年级上期末数学试卷(含答案解析)》由会员分享,可在线阅读,更多相关《贵州省黔东南州2021-2022学年九年级上期末数学试卷(含答案解析)(21页珍藏版)》请在七七文库上搜索。
1、2021-2022 学年贵州省黔东南州九年级学年贵州省黔东南州九年级上期末数学试卷上期末数学试卷 一、选择题: (每题一、选择题: (每题 4 分,分,10 个小题共个小题共 40 分)分) 1 (4 分)方程 x23x 的解为( ) A0 B3 C3 D0,3 2 (4 分) 如图, O 的半径为 5, 弦 AB 的长为 8, M 是弦 AB 上的动点, 则线段 OM 长的最小值为( ) A2 B3 C4 D5 3 (4 分)若将函数 y2x2的图象向左平移 1 个单位,再向上平移 3 个单位,可得到的抛物线是( ) Ay2(x1)23 By2(x1)2+3 Cy2(x+1)23 Dy2(x
2、+1)2+3 4 (4 分)如图,将 RtABC(其中B35,C90)绕点 A 按顺时针方向旋转到AB1C1的位置,使得点 C、A、B1在同一条直线上,那么旋转角等于( ) A55 B70 C125 D145 5 (4 分)若函数 ymx2+2x+1 的图象与 x 轴只有一个公共点,则常数 m 为( ) Am0 Bm1 Cm1 Dm0 或 m1 6 (4 分)半径为 2cm 的圆内接正六边形的面积等于( ) A4 B5 C D6 7 (4 分)某电视台举行的歌手大奖赛,每场比赛都有编号为 110 号共 10 道综合素质测试题供选手随机抽取作答 在某场比赛中, 前两位选手已分别抽走了 2 号、
3、7 号题, 第 3 位选手抽中 8 号题的概率是 ( ) A B C D 8 (4 分)已知一次函数 ykx+b(k、b 是常数,且 k0)的图象如图所示,则关于 x 的方程 x2+x+kb0的根的情况是( ) A没有实数根 B有一个实数根 C有两个相等的实数根 D有两个不相等的实数根 9 (4 分)二次函数 y2x28x+m 的图象上有两点 A(x1,y1) 、B(x2,y2) ,若 x12x2,且|x1+2|x2+2|,则( ) Ay1y2 By1y2 Cy1y2 Dy1、y2的大小不确定 10 (4 分)如图,有一圆锥形粮堆,其正视图是边长为 6m 的正三角形 ABC,粮堆母线 AC 的
4、中点 P 处有一老鼠正在偷吃粮食,此时,小猫正在 B 处,它要沿圆锥侧面到达 P 处捕捉老鼠,则小猫所经过的最短路程是( )m A3 B3 C3 D4 二、填空题: (每题二、填空题: (每题 4 分,分,10 个小题共个小题共 40 分)分) 11 (4 分)点 P(3,2)关于原点中心对称的点的坐标是 12 (4 分)已知关于 x 的方程 x2kx60 的一个根为 x3,则实数 k 的值为 13 (4 分)若关于 x 的方程 x26x+k0 有两个实数根,则 k 的取值范围是 14 (4 分)如图,在 RtABC 中,C90,CACB2分别以 A、B、C 为圆心,以AC 为半径画弧,三条弧
5、与边 AB 所围成的阴影部分的面积是 (保留 ) 15 (4 分)抛物线 yx2+bx+c 的部分图象如图所示,则关于 x 的方程x2+bx+c3 的解是 16 (4 分)抛物线 yx22x+3 关于原点中心对称的抛物线的解析式为 17 (4 分)如图,若 AB 是O 的直径,CD 是O 的弦,ABD55,则BCD 18 (4 分)已知:如图,等腰三角形 ABC 中,ABAC4,若以 AB 为直径的O 与 BC 相交于点 D,DEAB,DE 与 AC 相交于点 E,则 DE 19 (4 分)如图,是一个半径为 6cm,面积为 12cm2的扇形纸片,现需要一个半径 Rcm 的圆形纸片,使两张纸片
6、刚好能组合成圆锥体,则 R cm 20 (4 分)如图,把抛物线 y12x2平移得到抛物线 l,抛物线 l 经过点 A(6,0)和原点 O(0,0) ,它的顶点为 P,它的对称轴与抛物线 y12x2交于点 Q,则图中阴影部分的面积为 三、解答题: (三、解答题: (6 个小题共个小题共 70 分)分) 21 (8 分)解方程: (1)x27x+120; (2)x(2x5)4x10 22 (12 分)如图,两个转盘 A、B 都被分成 3 个全等的扇形,每个扇形内均标有不同的自然数,固定指针,同时转动转盘 A、B,两个转盘停止后观察两个指针所指的数字(若指针指在扇形的分界线上时,视为指向分界线左边
7、的扇形) (1)用列表法(或树状图)表示两个转盘停止转动后指针所指扇形内的数字的所有可能结果 (2)小明每转动一次就记录数据,并算出两数之和,其中“和为 7”的频数和频率如下表: 转动转盘总次数 10 20 30 50 100 150 180 240 330 450 “和为 7”出现的频数 2 7 10 16 34 50 59 80 110 150 “和为 7”出现的频率 0.2 0.35 0.33 0.32 0.34 0.33 0.33 0.33 0.33 0.33 请你根据上表数据,估计“和为 7”的概率是多少? (3)根据(1) (2) ,若 0 xy,试求出 x 和 y 的值 23 (
8、12 分)如图,四边形 ABCD 是正方形,点 F 是 BA 延长线上一点,连接 DF,ADF 绕点 A 旋转一定角度后得到ABE,若 AF3,AB7 (1)直接写出旋转角的度数; (2)求 DE 的长度; (3)求证:直线 BEDF 24 (12 分)如图,在 RtABC 中,B90,BAC 的平分线交 BC 于 D,E 为 AB 上一点,DEDC,以 D 为圆心,DB 的长为半径画圆 (1)求证:AC 是D 的切线; (2)若 AB12,BC9求D 的半径 25 (12 分)某水果批发商销售每箱进价为 40 元的苹果,物价部门规定每箱售价不得高于 55 元,市场调查发现,若每箱以 50 元
9、的价格出售,平均每天销售 90 箱,价格每提高 1 元,平均每天少销售 3 箱 (1)求平均每天销售量 y(箱)与销售价 x(元/箱) (x50)之间的函数关系式 (2)求该批发商平均每天的销售利润 w(元)与销售价 x(元/箱)之间的函数关系式 (3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少? 26 (14 分)已知:如图,抛物线 yx2+bx+c 与 x 轴交于 A(1,0) 、B(3,0)两点,与 y 轴交于点 C (1)求该抛物线的解析式; (2)求该抛物线的对称轴和顶点坐标; (3)在抛物线的对称轴上是否存在一点 P,使得以 P、B、C 为顶点的三角形为直角三角
10、形,若存在,请求点 P 坐标;若不存在,请说明理由 参考答案解析参考答案解析 一、选择题: (每题一、选择题: (每题 4 分,分,10 个小题共个小题共 40 分)分) 1 (4 分)方程 x23x 的解为( ) A0 B3 C3 D0,3 【分析】 先把方程化为一般式, 再利用因式分解法把方程转化为 x0 或 x30, 然后解一次方程即可 【解答】解:x23x0, x(x3)0, x0 或 x30, 所以 x10,x23 故选:D 【点评】 本题考查了解一元二次方程因式分解法: 因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法 2 (4 分) 如
11、图, O 的半径为 5, 弦 AB 的长为 8, M 是弦 AB 上的动点, 则线段 OM 长的最小值为( ) A2 B3 C4 D5 【分析】根据垂线段最短知,当 OMAB 时,OM 有最小值根据垂径定理和勾股定理求解 【解答】解:根据垂线段最短知,当 OMAB 时,OM 有最小值, 此时,由垂径定理知,点 M 是 AB 的中点, 连接 OA,AMAB4, 由勾股定理知,OM3 故选:B 【点评】本题利用了垂径定理和勾股定理求解 3 (4 分)若将函数 y2x2的图象向左平移 1 个单位,再向上平移 3 个单位,可得到的抛物线是( ) Ay2(x1)23 By2(x1)2+3 Cy2(x+1
12、)23 Dy2(x+1)2+3 【分析】易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式 【解答】解:原抛物线的顶点为(0,0) ,向左平移 1 个单位,再向上平移 3 个单位,那么新抛物线的顶点为(1,3) ; 可设新抛物线的解析式为 y(xh)2+k,代入得:y2(x+1)2+3, 故选:D 【点评】主要考查了二次函数图象与几何变换,抛物线平移不改变二次项的系数的值,解决本题的关键是得到新抛物线的顶点坐标 4 (4 分)如图,将 RtABC(其中B35,C90)绕点 A 按顺时针方向旋转到AB1C1的位置,使得点 C、A、B1在同一条直线上,那么旋转角等于( )
13、 A55 B70 C125 D145 【分析】根据直角三角形两锐角互余求出BAC,然后求出BAB1,再根据旋转的性质对应边的夹角BAB1即为旋转角 【解答】解:B35,C90, BAC90B903555, 点 C、A、B1在同一条直线上, BAB180BAC18055125, 旋转角等于 125 故选:C 【点评】本题考查了旋转的性质,直角三角形两锐角互余的性质,熟练掌握旋转的性质,明确每对对应点与旋转中心连线所成的角为旋转角是解题的关键 5 (4 分)若函数 ymx2+2x+1 的图象与 x 轴只有一个公共点,则常数 m 为( ) Am0 Bm1 Cm1 Dm0 或 m1 【分析】m0 时,
14、函数是一次函数,与 x 轴有一个交点;m0,则函数为二次函数由抛物线与 x 轴只有一个交点,得到根的判别式的值等于 0,且 m 不为 0,即可求出 m 的值 【解答】解:当 m0 时, 二次函数 ymx2+2x+1 的图象与 x 轴只有一个公共点, 44m0,且 m0, 解得:m1 当 m0 时 y2x+1 与 x 轴只有一个交点, 综上所述,m0 或 m1, 故选:D 【点评】此题考查了抛物线与 x 轴的交点,抛物线与 x 轴的交点个数由根的判别式的值来确定 6 (4 分)半径为 2cm 的圆内接正六边形的面积等于( ) A4 B5 C D6 【分析】设 O 是正六边形的中心,AB 是正六边
15、形的一边,OC 是边心距,则OAB 是正三角形,OAB的面积的六倍就是正六边形的面积 【解答】解:如图所示: 设 O 是正六边形的中心,AB 是正六边形的一边,OC 是边心距, AOB60,OAOB2cm, 则OAB 是正三角形, ABOA2cm, OCOAsinA2(cm) , SOABABOC2(cm2) , 正六边形的面积66(cm2) 故选:C 【点评】 本题考查了正多边形和圆, 理解正六边形被半径分成六个全等的等边三角形是解答此题的关键 7 (4 分)某电视台举行的歌手大奖赛,每场比赛都有编号为 110 号共 10 道综合素质测试题供选手随机抽取作答 在某场比赛中, 前两位选手已分别
16、抽走了 2 号、 7 号题, 第 3 位选手抽中 8 号题的概率是 ( ) A B C D 【分析】先求出题的总号数及 8 号的个数,再根据概率公式解答即可 【解答】解:前两位选手抽走 2 号、7 号题,第 3 位选手从 1、3、4、5、6、8、9、10 共 8 位中抽一个号,共有 8 种可能, 每个数字被抽到的机会相等,所以抽中 8 号的概率为 故选:B 【点评】考查概率的求法,关键是真正理解概率的意义,正确认识到本题是八选一的问题,不受前面叙述的影响 8 (4 分)已知一次函数 ykx+b(k、b 是常数,且 k0)的图象如图所示,则关于 x 的方程 x2+x+kb0的根的情况是( ) A
17、没有实数根 B有一个实数根 C有两个相等的实数根 D有两个不相等的实数根 【分析】先利用一次函数的性质得 k0,b0,再计算判别式的值得到b24(k1) ,于是可判断0,然后根据判别式的意义判断方程根的情况 【解答】解:由一次函数的图象可知 k0,b0, 1241(kb)14(kb)0, 方程 x2+x+kb0 有两个不相等的实数根 故选:D 【点评】本题考查了一次函数的图象与系数的关系,一元二次方程根与系数的关系,一元二次方程ax2+bx+c0(a0)的根与b24ac 有如下关系:当0 时,方程有两个不相等的实数根;当0 时,方程有两个相等的实数根;当0 时,方程无实数根也考查了一次函数图象
18、 9 (4 分)二次函数 y2x28x+m 的图象上有两点 A(x1,y1) 、B(x2,y2) ,若 x12x2,且|x1+2|x2+2|,则( ) Ay1y2 By1y2 Cy1y2 Dy1、y2的大小不确定 【分析】先求出抛物线的对称轴为直线 x2,然后比较点 A、B 到对称轴的距离,从而得到 y1与 y2的大小关系 【解答】解:函数 y2x28x+m 的对称轴为直线 x2, |x1+2|x2+2|, 即|x1(2)|x2(2)|, 点 A 到直线 x2 的距离大于点 B 到直线 x2 的距离, 而抛物线的开口向下, y1y2 故选:A 【点评】本题考查了二次函数图象上点的坐标特征:二次
19、函数图象上点的坐标满足其解析式也考查了二次函数的性质 10 (4 分)如图,有一圆锥形粮堆,其正视图是边长为 6m 的正三角形 ABC,粮堆母线 AC 的中点 P 处有一老鼠正在偷吃粮食,此时,小猫正在 B 处,它要沿圆锥侧面到达 P 处捕捉老鼠,则小猫所经过的最短路程是( )m A3 B3 C3 D4 【分析】求这只小猫经过的最短距离的问题首先应转化为圆锥的侧面展开图的问题,转化为平面上两点间的距离的问题根据圆锥的轴截面是边长为 6cm 的等边三角形可知,展开图是半径是 6 的半圆点 B是半圆的一个端点,而点 P 是平分半圆的半径的中点,根据勾股定理就可求出两点 B 和 P 在展开图中的距离
20、,就是这只小猫经过的最短距离 【解答】解:圆锥的底面周长是 6,则 6, n180,即圆锥侧面展开图的圆心角是 180 度 则在圆锥侧面展开图中 AP3,AB6,BAP90 度 在圆锥侧面展开图中 BPm 故小猫经过的最短距离是 3m 故选:C 【点评】本题考查的是平面展开最短路线问题,根据题意画出圆锥的侧面展开图,利用勾股定理求解是解答此题的关键 二、填空题: (每题二、填空题: (每题 4 分,分,10 个小题共个小题共 40 分)分) 11 (4 分)点 P(3,2)关于原点中心对称的点的坐标是 (3,2) 【分析】平面直角坐标系中任意一点 P(x,y) ,关于原点的对称点是(x,y)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 贵州省 东南 2021 2022 学年 九年级 上期 数学试卷 答案 解析
链接地址:https://www.77wenku.com/p-230521.html