冀教版八年级数学下册《第二十二章四边形》教案
《冀教版八年级数学下册《第二十二章四边形》教案》由会员分享,可在线阅读,更多相关《冀教版八年级数学下册《第二十二章四边形》教案(245页珍藏版)》请在七七文库上搜索。
1、第二十二章四边形1.了解多边形的定义,多边形的顶点、边、内角、外角、对角线等概念;探索并掌握多边形的内角和与外角和公式.2.理解平行四边形、矩形、菱形、正方形的概念,以及它们之间的关系;了解四边形的不稳定性.3.探索并证明平行四边形的性质定理和判定定理.4.探索并证明矩形、菱形、正方形的性质定理和判定定理.5.探索并掌握三角形的中位线定理.1.在本章知识的探究与深化的过程中,提高学生的合情推理与演绎推理的能力.2.在探索图形的性质与判定定理的活动过程中,进一步建立空间观念.1.通过经历运用图形变换探索图形性质的过程,体验数学研究和发现的过程,并能得出正确的结论.2.通过逆命题猜想、操作验证、逻
2、辑推理证明的过程,体验数学研究和发现的过程,学会数学思考的方法.3.进一步培养学生的数学说理能力与习惯,并要求学生能熟练书写规范的推理格式.1.本章的内容、地位和作用本章内容包括三个方面:基础知识四边形、特殊四边形以及多边形的有关概念,平行四边形、矩形、菱形和正方形的性质定理和判定定理,三角形的中位线定理;基本方法探索图形性质的基本方法(观察、试验、作图、变换、推理等);推理合情推理与演绎推理,凭借经验和直觉,通过归纳和类比等方法,发现问题,提出问题及从已有的事实(包括定义、公理、定理等)和确定的规则(包括运算的定义、法则、顺序等)出发,按照逻辑推理的法则进行证明和计算.在知识方面,四边形是最
3、基本的平面图形之一,是三角形有关内容的进一步发展,也是学生继续学习空间与图形等其他内容的基础.在几何知识研究方法与过程方面,把图形变换作为有效的工具,充分体现了图形变换在研究图形性质和判定中的作用.在推理能力训练方面,理解两种推理功能不同.二者相辅相成:合情推理用于探索思路,发现结论;演绎推理用于证明结论,在解决问题的过程中,逐步掌握两种推理的运用.2.本章内容呈现方式及特点.(1)以学生已经掌握的三角形有关知识以及图形变换(轴对称、平移、旋转,特别是中心对称)等有关几何事实为基础,通过观察、操作、思考和交流等数学活动,获得几何概念、性质定理、判定定理,培养学生推理的意识和能力.(2)根据本章
4、内容的特点,采用“先特殊的多边形(四边形),再一般的多边形”的编排思路,在呈现方式上,摒弃“结论例题练习”的陈述模式,改用“问题探究发现证明”的探究模式,并采用多种探究方法.(3)将合情推理与演绎推理紧密结合起来,把推理能力的培养建立在可操作的环节上.(4)本章特别强调图形性质和判定的探索过程,而不是简单地得到四边形、特殊四边形的有关性质和判定的结论.(5)在呈现具体内容时,教材力图为学生提供生动有趣的现实情境,通过各种活动,充分挖掘特殊四边形的中心对称性和轴对称性.这种设计,旨在进一步深化学生对四边形性质定理和判定定理的理解,以及对识图、简单画图等操作技能的掌握,进一步丰富学生的数学活动经验
5、,有意识地培养学生积极的情感态度,并促进其形成良好的数学观,【重点】1.理解和掌握平行四边形的性质定理和判定定理以及特殊平行四边形的性质和判定方法.2.多边形的内角和与外角和.【难点】平行四边形的性质定理与判定定理的综合应用.1.教学活动的组织要根据本章的具体内容和呈现方式的特点,以学生的生活经验和已有的数学活动经验(包括操作经验)为基础,注意题材选取的灵活性(既可以充分利用教材中已有的题材,也可以根据实际创设更现实、更有趣的问题情境),充分展开学生的活动,通过图形性质的探究过程,培养学生的抽象概括能力和推理能力.2.应特别关注学生的探索精神的培养.要有意识地引导学生自觉地表达对有关概念、结论
6、的理解,自觉地用自己的语言说明操作的过程,并利用说理和简单的推理印证结论的真实性.3.应注意图形变换的工具性作用.充分利用图形的平移、旋转(特别是中心对称)和轴对称来探究图形的性质和判定方法.4.注意合情推理与演绎推理地有机结合.要有意识地培养学生有条理的思考、表达和交流,使学生体会证明的过程要步步有据,使学生逐步掌握几何推理的基本步骤和综合法证明的格式.5.关注学生的合作与交流.在课堂上给学生自主、合作的活动机会,逐步培养学生的团体合作和竞争意识,发展交往与审美的能力,强调合作动机和个人责任.6.加强对关键问题与困难环节的引导与指导,增强学生的兴趣和信心.22.1平行四边形的性质2课时22.
7、2平行四边形的判定2课时22.3三角形的中位线1课时22.4矩形2课时22.5菱形2课时22.6正方形1课时22.7多边形的内角和与外角和1课时回顾与反思1课时22.1平行四边形的性质1.经历平行四边形概念的形成过程和性质的探究过程,体会平移、中心对称等图形变化在研究平行四边形及其性质中的作用.2.通过旋转等操作活动体会平行四边形的中心对称性.3.探索并掌握平行四边形的性质.通过证明平行四边形的性质定理的过程,进一步理解几何证明的意义.在操作、探究等数学活动中,提高学生的探究能力,增强交流与合作的意识.【重点】平行四边形的性质的探索.【难点】平行四边形的性质的探究和应用.第课时通过运用图形的变
8、化探索并掌握平行四边形的有关概念和特征.1.体验数学研究和发现的过程,并得出正确的结论.2.进一步体验一些变换思想,发展合情推理,进一步学习有条理地思考与表达,培养学生的探索能力与合作交流的习惯.3.尝试从不同角度寻求解决问题的多种方法,提高解决问题的能力.感受数学学习的乐趣,增加学习数学的兴趣和自信心.【重点】平行四边形的概念和特征.【难点】探索和掌握平行四边形的性质.【教师准备】课件16.【学生准备】刻度尺.导入一:你知道为什么用正方形地面砖铺地吗?伸缩门为什么能像松紧带似的折叠吗?更有趣的是蜜蜂蜂房是严格的六角形柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱形的底,由三个相同的
9、特殊的平行四边形组成,组成底盘的特殊的平行四边形的钝角为109度28分,锐角为70度32分,这样既坚固又省料,你想知道为什么如此神奇吗?请跟我一起走进平行四边形的课堂去探索吧!设计意图从生活实际出发,创设情境,提出问题,激发学生强烈的好奇心和求知欲.学生经历了将实际问题抽象为数学问题的建模过程.导入二:问题:什么叫做平行四边形?它有什么性质?回答1:两组对边分别平行的四边形叫做平行四边形.回答2:平行四边形的对边平行,相邻的内角互为补角.如图所示,平行四边形用符号“”表示,平行四边形ABCD记作“ABCD”,读作“平行四边形ABCD”.学生回答,师生共同评价,教师要强调平行四边形的符号记法,并
10、板书示范.设计意图通过简单的提问唤起学生对平行四边形的回忆,至于性质并不要求学生表达如何准确,更多的是为本节课指明方向.导入三:问题1:同学们,你们观察过阳光透过长方形窗口投在地面上的影子是什么形状吗?学生根据自己的生活经验,可能回答:平行四边形、矩形、四边形教师:太阳光线属于平行光线,窗口投在地面上的影子通常是平行四边形.问题2:爱动脑筋的小刚观察到平行四边形的影子有一种对称的美,他说只要量出一个内角的度数,就能知道其余三个内角的度数;只需测出一组邻边的长,便能计算出它的周长,这是为什么呢?通过本节课的学习,大家就能明白其中的道理.今天,我们共同研究平行四边形及其性质.设计意图通过观察平行光
11、线在室内的投影,让学生感受到平行四边形与生活实际紧密相连;同时,把思维兴奋点集中到要研究的平行四边形上来,为下面学习新知识创造了良好开端.过渡语从本节开始,我们将进一步认识一些特殊的四边形,并探究这些四边形的一些基本性质和判定方法.首先我们来确定一下平行四边形的性质.活动平行四边形的性质的探究思路一1.创设问题情境【课件1】在我们的周围存在着许多四边形,观察下列图片,从中找出四边形,并就它们的共同特性和不同特性,和大家交流你的看法.我们知道,平行四边形是我们生活中常见的一种图形,它有着十分和谐的对称美,四边形就在我们身边并与我们的生活息息相关.2.知识形成(1)让学生交流说出生活中见到的平行四
12、边形.(2)拿出一张坐标纸,画线段AB和直线PQ,学生动手操作:把AB沿着PQ方向平移到CD位置.(3)学生对(2)操作的思考:四边形ABCD是一个怎么样的四边形?根据平移的原则,AB与CD,AD与BC的位置关系如何?概括:两组对边分别平行的四边形叫做平行四边形.知识拓展定义具有双重性,具备“两组对边分别平行”的四边形才是“平行四边形”.反过来,“平行四边形”就一定具有“两组对边分别平行”的性质.平行四边形的定义既是平行四边形的一种性质,也是平行四边形的一种判定方法.【思考】(1)要识别一个图形是否是平行四边形,目前的方法有几个?(2)平行四边形应该有几组对边平行?3.一起探究【课件2】(1)
13、在半透明的纸上画一个ABCD,再复制一个,将两个图形完全重合,用大头针钉在中心处,使下面的图形不动,将上面的图形绕中心O旋转180,这两个图形能完全重合吗?平行四边形是不是中心对称图形?如果是中心对称图形,哪个点是它的对称中心?被对角线分成的三角形中,关于点O成中心对称的图形有几对?(2)在ABCD中,你发现有哪些相等的边或角,请你写出来.这一过程,教师要深入到学生中进行指导、点拨,及时总结学生的发现,教学环节可按步骤进行.总结:(1)平行四边形是中心对称图形,它的对称中心是两条对角线的交点.(2)平行四边形的对边相等,对角相等,对角线互相平分.请同学们先来证明平行四边形的对边相等、对角相等.
14、已知:如图所示,四边形ABCD是平行四边形.求证:(1)AD=CB,AB=CD.(2)BAD=DCB,ABC=CDA.证明:如图所示,连接BD,在ABD和CDB中,ADCB,ABCD,ABD=CDB,ADB=CBD.又BD=DB,ABDCDB.AD=CB,AB=CD,BAD=DCB.ABD=CDB,ADB=CBD,ABD+CBD=CDB+ADB,即ABC=CDA.平行四边形的性质定理:平行四边形的对边相等,对角相等.思路二1.拼图游戏【课件3】你能利用手中两张全等的三角形纸板拼出四边形吗?学生动手操作,教师观察,请学生代表将拼出的不同形状的四边形展示在黑板上.设计意图通过拼图游戏,让学生经历平
15、行四边形概念的探究过程,自然而然地形成平行四边形的概念,符合学生的认知规律,避免以往概念教学的机械记忆,同时培养学生的探究意识,拓展学生思维的广阔性.【课件4】观察拼出的这个四边形的对边有怎样的位置关系?说说你的理由.【师生活动】结合拼出的这个特殊的四边形,给出平行四边形的定义.设计意图渗透类比思想.在比较中学习,能够加深学生对平行四边形概念的理解.问题:黑板上展示的图形中,哪些是平行四边形?学生对黑板上拼出的四边形进行识别.教师强调定义的两个作用:一是可以判定一个四边形是不是平行四边形;二是平行四边形具有两组对边分别平行的性质.根据定义画一个平行四边形.教师画图示范,结合图形介绍平行四边形的
16、对边、对角、对角线等元素及平行四边形的记法、读法.设计意图鼓励学生学习方式的个性化,满足学生的多样化学习需求,做到既着眼于共同发展,又关注到个性差异.2.探究平行四边形的性质(1)活动要求:请你适当利用材料袋里的学具;可以采用度量、平移、旋转、折叠、拼图等方法;通过小组内合作,探究平行四边形有哪些性质.大家先看清要求,再动手操作,结论写在记录板上.(2)学生利用学具(全等的三角形纸板、平行四边形纸板各一对,刻度尺,量角器,图钉)小组内合作探究,教师以合作者的身份深入到各小组中,了解学生的探究过程并适当予以指导.(3)汇报:学生展示试验过程,相互补充探究出的结论,教师要引导学生将探究出的结论按照
17、边、角进行归类梳理,使知识的呈现具有条理性.(4)请大家思考一下,利用我们以前学习的几何知识通过说理能验证这三个结论吗?【教师小结】连接平行四边形的对角线,是我们常作的辅助线,它构造出两个全等的三角形,从而将四边形问题转化为熟悉的三角形问题,充分体现了由未知转化为已知,由繁化简的数学思想.(5)平行四边形的性质定理:平行四边形的对边相等,对角相等.【教师小结】我们用不同的方法,从不同的角度,通过试验、说理得到了平行四边形的性质,它为我们得到线段相等、角相等提供了新的方法和依据.设计意图小组合作探究结果的展示,从多个方面完善了学生对平行四边形性质的认识,大大提高了学习效率;更为重要的是在这一过程
18、中,不但完成了学习任务,而且还学会了与人交流沟通的本领.真正体现了新课程理念中“以人为本,促进学生终身发展”的教学理念.解决课前提出的实际问题:某时刻小刚用量角器量出地面上平行四边形影子的一个内角是60,就说知道了其余三个内角的度数;又用直尺量出一组邻边的长分别是40 cm和55 cm,便胸有成竹地说能够计算出这个平行四边形的周长.你知道小刚是如何计算的吗?这样计算的根据是什么?设计意图回顾导入中的问题,体现了教学的连贯性,也体现出数学知识的实用性,学以致用的体验使学生感受到数学学习是有趣的、丰富的、有价值的.开放性的命题培养了学生思维的严谨性、发散性、灵活性.3.性质的应用【课件5】已知:如
19、图所示,ABCD的周长为22 cm,ABD的周长为18 cm,求对角线BD的长.分析:求对角线BD的长,要先利用平行四边形的对边相等的性质,得到AD=BC,AB=DC,然后根据ABCD的周长和ABD的周长进行推理.解:四边形ABCD是平行四边形,AD=BC,AB=DC.由已知条件,得2(AB+AD)=22,AB+AD=11.又AB+AD+BD=18,BD=18-11=7.【课件6】(教材第128页例1)已知:如图所示,在ABCD中,B+D=260,求A,C的度数.分析:根据平行四边形的对角相等进行求解.解:在ABCD中,B=D,B+D=260,B=D=2602=130.又ADCB,A=180-
20、B=180-130=50.C=A=50.设计意图通过例题的讲解,让学生进一步理解和掌握平行四边形的性质,并能正确地加以应用.平行四边形的相关知识:定义两组对边分别平行的四边形是平行四边形表示方法平行四边形ABCD记作:ABCD对称性中心对称图形,它的对称中心是对角线的交点性质边两组对边分别平行两组对边分别相等角两组对角分别相等邻角互补1.如图所示,在平行四边形ABCD中,对角线AC,BD相交于点O,图中的全等三角形的对数为()A.1对B.2对C.3对D.4对解析:四边形ABCD是平行四边形,AB=CD,AD=BC,OD=OB,OA=OC.在AOD和COB中,DO=BO,AOD=COB,AO=C
21、O,AODCOB(SAS).同理可得AOBCOD(SAS).在ABD和CDB中,AD=BC,AB=CD,BD=DB,ABDCDB(SSS).同理可得ACDCAB(SSS).共有4对全等三角形.故选D.2.如图所示,ABCD中,AE平分BAD,若CE=3 cm,AB=4 cm,则ABCD的周长是()A.20 cmB.21 cmC.22 cmD.23 cm解析:四边形ABCD是平行四边形,AD=BC,AB=DC,ADBC,DAE=BEA.AE平分BAD,BAE=DAE,BEA=BAE,BE=AB=4 cm,BC=BE+CE=7 cm,ABCD的周长=2(AB+BC)=2(4+7)=22(cm).故
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第二十二章四边形 冀教版 八年 级数 下册 第二十二 四边形 教案
链接地址:https://www.77wenku.com/p-232033.html