17.2勾股定理的逆定理 教案
《17.2勾股定理的逆定理 教案》由会员分享,可在线阅读,更多相关《17.2勾股定理的逆定理 教案(6页珍藏版)》请在七七文库上搜索。
1、17.2勾股定理的逆定理第1课时 勾股定理的逆定理一、教学目标1能利用勾股定理的逆定理判定一个三角形是否为直角三角形;2灵活运用勾股定理及其逆定理解决问题;3理解原命题、逆命题、逆定理的概念及关系二、教学重难点重点:1.能利用勾股定理的逆定理判定一个三角形是否为直角三角形;2理解原命题、逆命题、逆定理的概念及关系难点:灵活运用勾股定理及其逆定理解决问题.三、教学过程(一)情境导入古埃及人曾经用下面的方法画直角:将一根长绳打上等距离的13个结,然后用桩钉成一个三角形(如图),他们认为其中一个角便是直角你知道这是什么道理吗?二、合作探究探究点一:勾股定理的逆定理【类型一】 判断三角形的形状 如图,
2、正方形网格中的ABC,若小方格边长为1,则ABC的形状为()A直角三角形B锐角三角形C钝角三角形D以上答案都不对解析:正方形小方格边长为1,BC5,AC3,AB.在ABC中,BC2AC2501868,AB268,BC2AC2AB2,ABC是直角三角形故选A.方法总结:要判断一个角是不是直角,可构造出三角形,然后求出三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是【类型二】 利用勾股定理的逆定理证明垂直关系 如图,已知在正方形ABCD中,AEEB,AFAD.求证:CEEF.解析:根据题设提供的信息,可将需证明垂直关系的两条线段转化到同一直角三角形
3、中,运用勾股定理的逆定理进行证明证明:连接CF.设正方形的边长为4,四边形ABCD为正方形,ABBCCDDA4.点E为AB中点,AFAD,AEBE2,AF1,DF3.由勾股定理得EF212225,EC2224220,FC2423225.EF2EC2FC2,CFE是直角三角形,且FEC90,即EFCE.方法总结:利用勾股定理的逆定理可以判断一个三角形是否为直角三角形,所以此定理也是判定垂直关系的一个主要的方法【类型三】 勾股数 判断下列几组数中,一定是勾股数的是()A1,B8,15,17C7,14,15 D.,1解析:选项A不是,因为和不是正整数;选项B是,因为82152172,且8、15、17
4、是正整数;选项C不是,因为72142152;选项D不是,因为与不是正整数故选B.方法总结:勾股数必须满足:三个数必须是正整数,例如:2.5、6、6.5满足a2b2c2,但是它们不是正整数,所以它们不是勾股数;一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数【类型四】 运用勾股定理的逆定理解决面积问题 如图,在四边形ABCD中,B90,AB8,BC6,CD24,AD26,求四边形ABCD的面积解析:连接AC,根据已知条件可求出AC,再运用勾股定理可证ACD为直角三角形,然后可分别求出两个直角三角形的面积,两者面积相加即为四边形ABCD的面积解:连接AC.B90,ABC为直角三角形,AC2AB2
5、BC28262102,AC10.在ACD中,AC2CD2100576676,AD2262676,AC2CD2AD2,ACD为直角三角形,且ACD90.S四边形ABCDSABCSACD681024144.方法总结:将求四边形面积的问题可转化为求两个直角三角形面积和的问题,解题时要利用题目信息构造出直角三角形,如角度,三边长度等探究点二:互逆命题与互逆定理 写出下列各命题的逆命题,并判断其逆命题是真命题还是假命题(1)两直线平行,同旁内角互补;(2)在同一平面内,垂直于同一条直线的两直线平行;(3)相等的角是内错角;(4)有一个角是60的三角形是等边三角形解析:求一个命题的逆命题时,分别找出各命题
6、的题设和结论将其互换即可得原命题的逆命题解:(1)同旁内角互补,两直线平行,真命题;(2)如果两条直线平行,那么这两条直线垂直于同一条直线(在同一平面内),真命题;(3)内错角相等,假命题;(4)等边三角形有一个角是60,真命题方法总结:判断一个命题是真命题需要进行逻辑推理,判断一个命题是假命题只需要举出反例即可四、板书设计1勾股定理的逆定理及勾股数如果三角形的三边长a,b,c满足a2b2c2,那么这个三角形是直角三角形2互逆命题与互逆定理.五、教学反思在本课时教学过程中,应以师生共同探讨为主激励学生回答问题,激发学生的求知欲课堂上师生互动频繁,既保证课堂教学进度,又提高课堂学习效率学生在探讨
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 17
链接地址:https://www.77wenku.com/p-233593.html