2023届高考数学一轮复习专题7:函数的零点(含答案)
《2023届高考数学一轮复习专题7:函数的零点(含答案)》由会员分享,可在线阅读,更多相关《2023届高考数学一轮复习专题7:函数的零点(含答案)(17页珍藏版)》请在七七文库上搜索。
1、专题7 函数的零点一、 典例分析1(2019新课标)函数在,的零点个数为A2B3C4D52(2014上海)设为函数的零点,则ABCD3(2013天津)函数的零点个数为A1B2C3D44(2020天津)已知函数若函数恰有4个零点,则的取值范围是A,B,C,D,5(2017新课标)已知函数有唯一零点,则ABCD16(2015天津)已知函数,函数,其中,若函数恰有4个零点,则的取值范围是A,BCD,7(2014新课标)已知函数,若存在唯一的零点,且,则实数的取值范围是ABCD8 (2018新课标)函数在,的零点个数为9(2018上海)设,函数,若函数与的图象有且仅有两个不同的公共点,则的取值范围是1
2、0(2016山东)已知函数,其中,若存在实数,使得关于的方程有三个不同的根,则的取值范围是二、 真题集训1(2014北京)已知函数,在下列区间中,包含零点的区间是ABCD2(2015上海)记方程:,方程:,方程:,其中,是正实数当,成等比数列时,下列选项中,能推出方程无实根的是A方程有实根,且有实根B方程有实根,且无实根C方程无实根,且有实根D方程无实根,且无实根3(2015天津)已知函数,函数,则函数的零点个数为A2B3C4D54(2014山东)已知函数丨丨,若方程有两个不相等的实根,则实数的取值范围是AB,CD5(2013湖南)函数的图象与函数的图象的交点个数为A3B2C1D06(2013
3、重庆)若,则函数的两个零点分别位于区间A和内B和内C和内D和内7(2020上海)设,若存在定义域为的函数同时满足下列两个条件:(1)对任意的,的值为或;(2)关于的方程无实数解,则的取值范围是8(2015湖北)函数的零点个数为9(2015江苏)已知函数,则方程实根的个数为10.(2015湖北)的零点个数为11(2015北京)设函数若,则的最小值为;若恰有2个零点,则实数的取值范围是12.(2014江苏)已知是定义在上且周期为3的函数,当,时,若函数在区间,上有10个零点(互不相同),则实数的取值范围是典例分析答案1(2019新课标)函数在,的零点个数为A2B3C4D5分析:令,得 或,再根据
4、的取值范围,求出零点解答:解:函数 在,的零点个数,即方程 在区间,的根个数,即 在区间,的根个数,即 或 在区间,的根个数,解得或 或所以函数在,的零点个数为3个故选:点评:本题考查了函数的零点与方程的根的关系,考查了方程思想,属于基础题2(2014上海)设为函数的零点,则ABCD分析:通过,(1),可得(1),故函数的零点在区间内,得到结果解答:解:函数的零点为,;(1),(1),故函数的零点在区间内,故选:点评:本题主要考查函数的零点的判定定理的应用,属于基础题3(2013天津)函数的零点个数为A1B2C3D4分析:通过令,将方程的解转化为函数图象的交点问题,从而判断函数的零点个数解答:
5、解:函数,令,在同一坐标系中作出与,如图,由图可得零点的个数为2故选:点评:本题考查函数的零点,函数的图象的作法,考查数形结合与转化思想4(2020天津)已知函数若函数恰有4个零点,则的取值范围是A,B,C,D,分析:问题转化为有四个根,与有四个交点,再分三种情况当时,当时,当时,讨论两个函数是否能有4个交点,进而得出的取值范围解答:解:若函数恰有4个零点,则有四个根,即与有四个交点,当时,与图象如下:两图象只有两个交点,不符合题意,当时,与轴交于两点,图象如图所示,当时,函数的函数值为,当时,函数的函数值为,所以两图象有4个交点,符合题意,当时,与轴交于两点,在,内两函数图象有两个交点,所以
6、若有四个交点,只需与在,还有两个交点,即可,即在,还有两个根,即在,还有两个根,函数,(当且仅当时,取等号),所以,且,所以,综上所述,的取值范围为,故选:点评:本题考查函数的零点,参数的取值范围,关键利用分类讨论思想,分析函数的交点,属于中档题5(2017新课标)已知函数有唯一零点,则ABCD1分析:方法一:通过转化可知问题等价于函数的图象与的图象只有一个交点求的值分、三种情况,结合函数的单调性分析可得结论方法二:由已知令,则为偶函数,图象关于对称,结合已知函数有唯一零点及偶函数图象关于轴对称可求解答:解:因为,所以函数有唯一零点等价于方程有唯一解,等价于函数的图象与的图象只有一个交点当时,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 高考 数学 一轮 复习 专题 函数 零点 答案
链接地址:https://www.77wenku.com/p-234871.html