2023届高考数学一轮复习专题14:解三角形(1)含答案
《2023届高考数学一轮复习专题14:解三角形(1)含答案》由会员分享,可在线阅读,更多相关《2023届高考数学一轮复习专题14:解三角形(1)含答案(12页珍藏版)》请在七七文库上搜索。
1、专题14 解三角形(1)一、 典例分析题型一:利用正余弦定理解三角形1(2021甲卷)在中,已知,则A1BCD32(2020新课标)在中,则ABCD3(2020新课标)在中,则ABCD4(2019新课标)的内角,的对边分别为,已知,则A6B5C4D35(2018新课标)的内角,的对边分别为,若的面积为,则ABCD6(2021乙卷)记的内角,的对边分别为,面积为,则7(2019新课标)的内角,的对边分别为,若,则的面积为8(2019新课标)的内角,的对边分别为,已知,则9(2021天津)在中,内角,的对边分别为,且,(1)求的值;(2)求的值;(3)求的值10(2021上海)在中,已知,(1)若
2、,求(2)若,求二、真题集训1(2018新课标)在中,则ABCD2(2016山东)中,角,的对边分别是,已知,则ABCD3(2016新课标)的内角、的对边分别为、已知,则ABC2D34(2016天津)在中,若,则A1B2C3D45(2019上海)在中,且,则6(2018浙江)在中,角,所对的边分别为,若,则,7(2017新课标)的内角,的对边分别为,已知,则8(2016上海)已知的三边长分别为3,5,7,则该三角形的外接圆半径等于9(2019北京)在中,()求,的值;()求的值10(2019江苏)在中,角,的对边分别为,(1)若,求的值;(2)若,求的值11(2019北京)在中,()求,的值;
3、()求的值12(2018新课标)在平面四边形中,(1)求;(2)若,求典例分析答案题型一:利用正余弦定理解三角形1(2021甲卷)在中,已知,则A1BCD3分析:设角,所对的边分别为,利用余弦定理得到关于的方程,解方程即可求得的值,从而得到的长度解答:解:设角,所对的边分别为,结合余弦定理,可得,即,解得 舍去),所以故选:点评:本题考查了余弦定理,考查了方程思想,属基础题2(2020新课标)在中,则ABCD分析:先根据余弦定理求出,再代入余弦定理求出结论解答:解:在中,由余弦定理可得;故;,故选:点评:本题主要考查了余弦定理的应用,熟练掌握余弦定理是解本题的关键3(2020新课标)在中,则A
4、BCD分析:由已知利用同角三角函数基本关系式可求的值,利用余弦定理可求的值,可得,利用三角形的内角和定理可求,利用诱导公式,二倍角的正切函数公式即可求解的值解答:解:,可得,则故选:点评:本题主要考查了同角三角函数基本关系式,余弦定理,三角形的内角和定理,诱导公式,二倍角的正切函数公式在解三角形中的应用,考查了计算能力和转化思想,属于基础题4(2019新课标)的内角,的对边分别为,已知,则A6B5C4D3分析:利用正弦定理和余弦定理列出方程组,能求出结果解答:解:的内角,的对边分别为,解得,故选:点评:本题考查了正弦定理、余弦定理、三角函数性质,考查了推理能力与计算能力,属于中档题5(2018
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 高考 数学 一轮 复习 专题 14 三角形 答案
链接地址:https://www.77wenku.com/p-234879.html