2023届高考数学一轮复习专题6:函数的图象(含答案)
《2023届高考数学一轮复习专题6:函数的图象(含答案)》由会员分享,可在线阅读,更多相关《2023届高考数学一轮复习专题6:函数的图象(含答案)(18页珍藏版)》请在七七文库上搜索。
1、专题6 函数的图象一、典例分析1(2021浙江)已知函数,则图象为如图的函数可能是ABCD2(2019新课标)函数在,的图象大致为ABCD3(2019新课标)函数在,的图象大致为ABCD4(2018新课标)函数的图象大致为ABCD5(2018新课标)下列函数中,其图象与函数的图象关于直线对称的是ABCD6(2018上海)设是含数1的有限实数集,是定义在上的函数,若的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,(1)的可能取值只能是ABCD07(2018新课标)函数的图象大致为ABCD8(2018新课标)已知函数,若存在2个零点,则的取值范围是A,B,C,D,9(2017山东)已知当,时
2、,函数 的图象与的图象有且只有一个交点,则正实数的取值范围是A,B,C,D,10(2020天津)已知函数若函数恰有4个零点,则的取值范围是A,B,C,D,二、 真题集训1(2018浙江)函数的图象可能是ABCD2(2017浙江)函数的导函数的图象如图所示,则函数的图象可能是ABCD3(2016浙江)函数的图象是ABCD4(2016新课标)函数在,的图象大致为ABCD5(2016上海)已知函数的图象是折线,如图,其中,若直线与的图象恰有四个不同的公共点,则的取值范围是A, BC,D6(2015新课标)设函数的图象与的图象关于对称,且,则AB1C2D47(2014湖南)若函数与图象上存在关于轴对称
3、的点,则的取值范围是ABCD8(2015天津)已知函数,函数,则函数的零点个数为A2B3C4D59(2015湖北)函数的零点个数为10声明:101(2016山东)已知函数,其中,若存在实数,使得关于的方程有三个不同的根,则的取值范围是典例分析答案1(2021浙江)已知函数,则图象为如图的函数可能是ABCD分析:可以判断所求函数为奇函数,利用函数的奇偶性可排除选项,;利用函数在上的单调性可判断选项,解答:解:由图可知,图象关于原点对称,则所求函数为奇函数,因为为偶函数,为奇函数,函数为非奇非偶函数,故选项错误;函数为非奇非偶函数,故选项错误;函数,则对恒成立,则函数在上单调递增,故选项错误故选:
4、点评:本题考查了函数图象的识别,解题的关键是掌握识别图象的方法:可以从定义域、值域、函数值的正负、特殊点、特殊值、函数的性质等方面进行判断,考查了直观想象能力与逻辑推理能力,属于中档题2(2019新课标)函数在,的图象大致为ABCD分析:由的解析式知为奇函数可排除,然后计算,判断正负即可排除,解答:解:,为,上的奇函数,因此排除;又,因此排除,;故选:点评:本题考查了函数的图象与性质,解题关键是奇偶性和特殊值,属基础题3(2019新课标)函数在,的图象大致为ABCD分析:由的解析式知该函数为奇函数可排除,然后计算时的函数值,根据其值即可排除,解答:解:由在,知,是,上的奇函数,因此排除又(4)
5、,因此排除,故选:点评:本题考查了函数的图象与性质,解题关键是奇偶性和特殊值,属基础题4(2018新课标)函数的图象大致为ABCD分析:判断函数的奇偶性,利用函数的定点的符号的特点分别进行判断即可解答:解:函数,则函数为奇函数,图象关于原点对称,排除,当时,(1),排除当时,排除,故选:点评:本题主要考查函数的图象的识别和判断,利用函数图象的特点分别进行排除是解决本题的关键5(2018新课标)下列函数中,其图象与函数的图象关于直线对称的是ABCD分析:直接利用函数的图象的对称和平移变换求出结果解答:解:首先根据函数的图象,则:函数的图象与的图象关于轴对称由于函数的图象关于直线对称则:把函数的图
6、象向右平移2个单位即可得到:即所求得解析式为:故选:点评:本题考查的知识要点:函数的图象的对称和平移变换6(2018上海)设是含数1的有限实数集,是定义在上的函数,若的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,(1)的可能取值只能是ABCD0分析:直接利用定义函数和赋值法的应用求出结果解答:解:由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合我们可以通过代入和赋值的方法当(1),0时,此时得到的圆心角为,0,然而此时或者时,都有2个与之对应,而我们知道函数的定义就是要求一个只能对应一个,因此只有当,此时旋转,此时满足一个只会对应一个,因此答案就
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 高考 数学 一轮 复习 专题 函数 图象 答案
链接地址:https://www.77wenku.com/p-234880.html