2023届高考数学一轮复习专题13:三角函数的图像与性质(含答案)
《2023届高考数学一轮复习专题13:三角函数的图像与性质(含答案)》由会员分享,可在线阅读,更多相关《2023届高考数学一轮复习专题13:三角函数的图像与性质(含答案)(15页珍藏版)》请在七七文库上搜索。
1、专题13 三角函数的图像与性质一、 典例分析1(2021新高考)下列区间中,函数单调递增的区间是AB,CD,2(2021乙卷)函数的最小正周期和最大值分别是A和B和2C和D和23(2020新课标)设函数在,的图象大致如图,则的最小正周期为ABCD4.(2019新课标)下列函数中,以为最小正周期且在区间,单调递增的是ABCD5(2019新课标)设函数,已知在,有且仅有5个零点下述四个结论:在有且仅有3个极大值点;在有且仅有2个极小值点;在单调递增;的取值范围是,其中所有正确结论的编号是ABCD6(2018新课标)已知函数,则A的最小正周期为,最大值为3B的最小正周期为,最大值为4C的最小正周期为
2、,最大值为3D的最小正周期为,最大值为47(2017天津)设函数,其中,若,且的最小正周期大于,则A,B,C,D,8(2016新课标)已知函数,为的零点,为图象的对称轴,且在,上单调,则的最大值为A11B9C7D59(2015新课标)如图,长方形的边,是的中点,点沿着边,与运动,记将动点到,两点距离之和表示为的函数,则的图象大致为ABCD10(2019浙江)设函数,()已知,函数是偶函数,求的值;()求函数的值域二、 真题集训1(2018新课标)函数的最小正周期为ABCD2(2016浙江)设函数,则的最小正周期A与有关,且与有关B与有关,但与无关C与无关,且与无关D与无关,但与有关3(2015
3、新课标)函数的部分图象如图所示,则的单调递减区间为A,B,C,D,4(2015安徽)已知函数,均为正的常数)的最小正周期为,当时,函数取得最小值,则下列结论正确的是A(2)B(2)C(2)D(2)5(2014全国)使函数为偶函数的最小正数ABCD6(2014新课标)设函数,若存在的极值点满足,则的取值范围是A,B,C,D,7(2013大纲版)已知函数,下列结论中不正确的是A的图象关于中心对称B的图象关于对称C的最大值为D既是奇函数,又是周期函数8(2020上海)已知函数,(1)的周期是,求,并求的解集;(2)已知,求的值域9(2015山东)设()求的单调区间;()在锐角中,角,的对边分别为,若
4、,求面积的最大值典例分析答案1(2021新高考)下列区间中,函数单调递增的区间是AB,CD,分析:本题需要借助正弦函数单调增区间的相关知识点求解解答:解:令,则,当时,故选:点评:本题考查正弦函数单调性,是简单题2(2021乙卷)函数的最小正周期和最大值分别是A和B和2C和D和2分析:化简函数的表达式,再利用三角函数的周期,正弦函数的最值求解即可解答:解:,当时,函数取得最大值;函数的周期为,最大值故选:点评:本题考查了辅助角公式、三角函数的周期性与最值,考查了推理能力与计算能力,属于中档题3(2020新课标)设函数在,的图象大致如图,则的最小正周期为ABCD分析:由图象观察可得最小正周期小于
5、,大于,排除,;再由,求得,对照选项,代入计算,即可得到结论解答:解:由图象可得最小正周期小于,大于,排除,;由图象可得,即为,若选,即有,由,可得不为整数,排除;若选,即有,由,可得,成立故选:点评:本题考查三角函数的图象和性质,主要是函数的周期的求法,运用排除法是迅速解题的关键,属于中档题4.(2019新课标)下列函数中,以为最小正周期且在区间,单调递增的是ABCD分析:根据正弦函数,余弦函数的周期性及单调性依次判断,利用排除法即可求解解答:解:不是周期函数,可排除选项;的周期为,可排除选项;在处取得最大值,不可能在区间,单调递增,可排除故选:点评:本题主要考查了正弦函数,余弦函数的周期性
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 高考 数学 一轮 复习 专题 13 三角函数 图像 性质 答案
链接地址:https://www.77wenku.com/p-234881.html