2023年高考数学二轮复习(热点·重点·难点)专练3:函数及其表示、函数的性质(含答案解析)
《2023年高考数学二轮复习(热点·重点·难点)专练3:函数及其表示、函数的性质(含答案解析)》由会员分享,可在线阅读,更多相关《2023年高考数学二轮复习(热点·重点·难点)专练3:函数及其表示、函数的性质(含答案解析)(11页珍藏版)》请在七七文库上搜索。
1、重难点3 函数及其表示、函数的性质1.求函数定义域的两种方法方法解读适合题型直接法构造使解析式有意义的不等式(组)求解已知函数的具体表达式,求f(x)的定义域转移法若yf(x)的定义域为(a,b),则解不等式ag(x)b即可求出yf(g(x)的定义域已知f(x)的定义域,求f(g(x)的定义域若yf(g(x)的定义域为(a,b),则求出g(x)在(a,b)上的值域即得f(x)的定义域已知f(g(x)的定义域,求f(x)的定义域2求分段函数的参数或自变量的值(或范围)的方法求某条件下参数或自变量的值(或范围),先假设所求的值或范围在分段函数定义区间的各段上,然后求出相应自变量的值或范围,切记代入
2、检验,看所求的自变量的值或范围是否满足相应各段自变量的取值范围3.函数值域与最值求法配方法; 换元法;利用函数有界性求值域(最值);不等式法;利用判别式求值域(最值);数形结合法;分段函数的值域;复合函数的值域。2023高考仍重点考查分段函数求值、不等式、方程问题,注意函数定义域、值域与最值方法的复习.函数的性质以理解函数的奇偶性、会用函数的奇偶性为主,常与函数的单调性、周期性与对称性交汇命题,加强函数与方程思想、转化与化归思想的应用意识,题型以选择、填空题为主,中等偏上难度.(建议用时:40分钟)一、单选题1若集合,则等于()ABCD2与函数有相同图象的一个函数是()ABC,其中D,其中3已
3、知函数的定义域是,若对于任意两个不相等的实数,总有成立,则函数一定是()A奇函数B偶函数C增函数D减函数4设函数,则下列函数中为奇函数的是()ABCD5设,则()ABCD6函数和的定义域均为R,“,都是奇函数”是“与的积是偶函数”的()A必要条件但非充分条件B充分条件但非必要条件C充分必要条件D非充分条件也非必要条件7与曲线关于原点对称的曲线为()ABCD8已知函数的定义域为,为偶函数,为奇函数,则()ABCD9已知是上的减函数,那么a的取值范围是()ABCD10如图是下列四个函数中的某个函数在区间的大致图像,则该函数是()ABCD11若函数f(x)、g(x)分别为R上的奇函数、偶函数,且满足
4、f(x)g(x)ex,则有()Af(2)f(3)g(0)Bg(0)f(3)f(2)Cf(2)g(0)f(3)Dg(0)f(2)f(3)12关于函数,有下面四个结论:是奇函数;当时,恒成立;的最大值是;的最小值是其中正确结论的个数为()A1个B2个C3个D4个二、填空题13函数的定义域是_14已知函数是偶函数,则_.15设是定义在R上的奇函数若当时,则_16关于函数f(x)=有如下四个命题:f(x)的图象关于y轴对称f(x)的图象关于原点对称f(x)的图象关于直线x=对称f(x)的最小值为2其中所有真命题的序号是_重难点3 函数及其表示、函数的性质1.求函数定义域的两种方法方法解读适合题型直接法
5、构造使解析式有意义的不等式(组)求解已知函数的具体表达式,求f(x)的定义域转移法若yf(x)的定义域为(a,b),则解不等式ag(x)b即可求出yf(g(x)的定义域已知f(x)的定义域,求f(g(x)的定义域若yf(g(x)的定义域为(a,b),则求出g(x)在(a,b)上的值域即得f(x)的定义域已知f(g(x)的定义域,求f(x)的定义域2求分段函数的参数或自变量的值(或范围)的方法求某条件下参数或自变量的值(或范围),先假设所求的值或范围在分段函数定义区间的各段上,然后求出相应自变量的值或范围,切记代入检验,看所求的自变量的值或范围是否满足相应各段自变量的取值范围3.函数值域与最值求
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年高 数学 二轮 复习 热点 重点 难点 函数 及其 表示 性质 答案 解析
链接地址:https://www.77wenku.com/p-235619.html