2021年4月自学考试04183概率论与数理统计经管类详细试题(含答案)
《2021年4月自学考试04183概率论与数理统计经管类详细试题(含答案)》由会员分享,可在线阅读,更多相关《2021年4月自学考试04183概率论与数理统计经管类详细试题(含答案)(19页珍藏版)》请在七七文库上搜索。
1、全国2021年4月高等教育自学考试概率论与数理统计(经营类)试题课程代码:04183一、单项选择题:本大题共10小题,每小题2分,共20分,在每小题列出的备选项中只有一项是最符合题目要求的,请将其选出。1某人打靶时连续射击两次,事件“至少有一次中靶”的对立事件是(A)A“两次都不中靶”B“两次都中靶”C“只有一次中靶”D“至多有一次中靶”【解析】对立事件(P35)称事件“A不发生”为事件A的对立事件(或余事件,或逆事件),记作,若事件A与事件B中至少有一个发生,且A与B互不相容即,则称A与B互为对立事件,对于任意事件“至少有一次中靶”的对立事件,显然有:“两次都不中靶”。2设事件A与B互不相容
2、,且,则(C)A0.2B0.3C0.5D0.8【解析】互不相容事件(P34):若事件A与事件B不能同时发生,即,则称事件A与事件B是互不相容的两个事件,简称A与B互不相容(或互斥)由互斥事件的基本性质可知:A,B是互不相容的,故:3甲、乙两人对弈一局,两人下成和棋的概率是1/2,乙获胜的概率是1/3,则甲获胜的概率是(A)A1/6B1/3C1/2D2/3【解析】对立事件(P35)称事件“A不发生”为事件A的对立事件(或余事件,或逆事件),记作。根据甲获胜与两个人和棋或乙获胜对立,可得甲获胜概率等于1减去两人和棋的概率,再减去乙获胜的概率。因为甲获胜与两个人和棋或乙获胜对立,所以甲获胜概率是:故
3、选:A.4设随机变量,则,则常数c(C)A0B2C3D4【解析】正态分布(P74):其中,为常数,则称X服从参数为,的正态分布,简记为由题意得X的分布函数为因为由题意知故即xc为正态分布的对称轴又随机变量则c35对于任意参数,随机变量X均可满足E(X)D(X),则X服从的分布一定是(D)A均匀分布B指数分布C二项分布D泊松分布【解析】上述选项中,只有泊松分布的方差与均值相等,又E(X)D(X),因此选D。6设随机变量,X与Y相互独立,则D(XY)(D)A2B6C12D20【解析】方差的计算(P129):方差的性质:性质6:设x为随机变量C为常数,则性质7:设X,Y为相互独立的随机变量,则根据性
4、质6和性质7,又,则7设是来自总体的样本,如果,则常数a,b的值分别为(A)Aa1/20,b1/100Ba1/12,b1/28Ca20,b100Da12,b28【解析】x分布(P178):设,独立同分布于标准正态分布N(0,1),则的分布称为自由度为N的分布,记为令,则,为使,必有,因而注意到,由分别得8设总体,为来自的样本,为样本均值,则未知参数的无偏估计是(B)ABCD【解析】点估计的无偏性(P194):设是的一个估计,的参数空间为0,若对任意的0,有E(),则称是的无偏估计,否则称为有偏估计。由题意可知:又依题可知:9设总体,已知,的置信度为1a的的置信区间长度为,则当a增大时,的变化长
5、度为(B)A增大B减小C不变D不确定【解析】单个正态总体参数的置信区间(P198):设总体X服从正态总体,则参数和的置信区间如下:(1)已知时u的置信度1a的置信区间:当a增大时,减小,从而置信区间的长度将变大,故答案为B10在线性回归模型中,总的偏差平方和为SST,剩余平方和为SSE,回归平方和为SSR,三者之间的关系是(C)ASSESSTSSRBSSRSSTSSECSSTSSESSRDSSTSSESSR0教材找不到答案。【解析】公式:总的偏差平方和SST剩余平方和SSE回归平方和SSR二、填空题:本大题共15小题,每小题2分,共30分。11已知,则_【解析】条件概率与乘法公式(P44):1
6、、条件概率:设A,B是两个事件,且P(B)0,称为在事件B发生条件下事件A发生的条件概率.当P(A)0时,依题意可知:得,12设随机事件A与B相互独立,则_【解析】两事件相互独立及其性质(P49):若P(AB)P(A)P(B),则称A与B相互独立,简称A,B独立。因为随机事件A与B相互独立13某种饮料每箱装6听,如果其中有2听不合格,质检人员随机抽取2听,则检测出不合格饮料的概率是_0.6_【解析】对立事件(P35)称事件“A不发生”为事件A的对立事件(或余事件,或逆事件),记作设检测出不合格饮料的概率为P(A),则检测出合格饮料的概率为,有,14某射手射击所得环数x的分布律为,如果命中810
7、环为优秀,则这名射手射击一次为优秀的概率是_0.62_【解析】离散型随机变量的分布律(P59):定义:若随机变量X只取有限多个或可列无限多个值,则称X为离散型随机变量.在实际应用中,有时还要求X满足某一条件这样的事件的概率,如,等,求法就是把满足条件的所对应的概率相加起来.由题意知:命中810环优秀概率15设随机变量,为标准正态分布函数,且0.9772,则_0.9544_【解析】正态分布和标准正态分布(P74):通常我们称(x)为标准正态分布函数,它具有下列性质:正态分布的概率计算公式:(2)依题可知:【解析】正态分布和标准正态分布(P74):通常我们称(x)为标准正态分布函数,它具有下列性质
8、:正态分布的概率计算公式:(2)依题可知:16已知随机变量X服从参数为的泊松分布,随机变量Y服从二项分布B(2,)且满足,则_ln4_【解析】二项分布(P32):若随机变量x的可能取值为而X的分布律为其中则称X服从参数为n,p的二项分布,简记为泊松分布(P63);设随机变量x的可能取值为而X的分布律为其中,则称X服从参数为的泊松分布,简记为.依题意可知即17设随机变量X服从参数为1的指数分布,则_【解析】指数分布(P73):若随机变量x的概率密度为其中为常数,则称X服从参数为的指数分布,简记为其分布函数为依题意:随机变量X服从参数为1的指数分布18设二维随机变量(X,Y)的分布律为则ab_0.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 自学考试 04183 概率论 数理统计 经管 详细 试题 答案
链接地址:https://www.77wenku.com/p-237201.html