2022—2023学年浙教版七年级下数学全册教案
《2022—2023学年浙教版七年级下数学全册教案》由会员分享,可在线阅读,更多相关《2022—2023学年浙教版七年级下数学全册教案(110页珍藏版)》请在七七文库上搜索。
1、1.1平行线教学目标:1理解平行线的意义,了解同一平面内两条直线的位置关系;2会根据几何语句画图,会用直尺和三角板画平行线;3了解“三线八角”并能在具体图形中找出同位角、内错角与同旁内角;重点:平行线的概念与平行公理;难点:对平行公理的理解教学过程:一、新课导入:1.相交线是如何定义的?2.平面内两条直线的位置关系除相交外,还有哪些呢?二、解决新知:1.平行线概念:在同一平面内,不相交的两条直线叫做平行线直线a与b平行,记作ab(画出图形)2.同一平面内两条直线的位置关系有两种:(1) ;(2) 3.对平行线概念的理解:两个关键:一是“ ”(举例说明);二是“ ”一个前提:对 直线而言4.平行
2、线的画法:平行线的画法是几何画图的基本技能之一,在以后的学习中,会经常遇到画平行线的问题方法为:一“落”(三角板的一边落在已知直线上),二“靠”(用直尺紧靠三角板的另一边),三“移”(沿直尺移动三角板,直至落在已知直线上的三角板的一边经过已知点),四“画”(沿三角板过已知点的边画直线)5.平行公理:过点B画直线a的平行线,能画出几条?再过点C画直线a的平行线,能画出几条? .C .B m回忆垂线性质: 平行公理: . 上图中过点C画直线a的平行线,它和前面过点B画出的直线平行吗?平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行即:如果ba,ca,那么 c b a三.拓展应
3、用1.读下列语句,并画出图形:(1)点P是直线AB外一点,直线CD经过点P,且与直线AB平行;(2)直线AB,CD是相交直线,点P是直线AB,CD外的一点,直线EF经过点P且与直线AB平行,与直线CD相交于点E ;2.如图,直线a,b被直线c所截,形成的8个角中,其中同位角有 对,内错角有 对,同旁内角有 对1.2同位角 内错角 同旁内角教学目标1、了解同位角、内错角、同旁内角的意义。2、会在简单的图形中辨认同位角、内错角、同旁内角。3、会在给定某个条件下进行有关同位角、内错角、同旁内角的判定和计算。教学重点与难点教学重点:同位角、内错角、同旁内角的概念。 教学难点:各对关系角的辨认,复杂图形
4、的辨认是本节教学的难点。教学过程(三)教学过程:一. 引入:中国最早的风筝据说是由古代哲学家墨翟制作的,风筝的骨架构成了多种关系的角。这就是我们这节课要讨论的问题:两条直线和第三条直线相交的关系。二让我们接受新的挑战:-讨论:两条直线和第三条直线相交的关系如图:两条直线a1 , a2和第三条直线a3相交。(或者说:直线 a1 , a2 被直线 a3 所截。)其中直线 a1 与直线 a3 相交构成四个角,直线 a2 与直线 a3 相交构成四个角。所以这个问题我们经常就叫它“三线八角”问题。三.让我们来了解 “三线八角”:如图:直线 a1 , a2 被直线 a3 所截,构成了八个角。1. 观察 1
5、与5的位置:它们都在第三条直线 a3 的同旁,并且分别位于直线 a1 , a2 的相同一侧,这样的一对角叫做“同位角”。 类似位置关系的角在图中还有吗?如果有,请找出来?答: 有。 2与6; 4与8; 3与7 2. 观察 3与5的位置:它们都在第三条直线 a3 的异侧,并且都位于两条直线 a1 , a2 之间,这样的一对角叫做“内错角”。 类似位置关系的角在图中还有吗?如果有,请找出来?答: 有。 2与8 3. 观察 2与5的位置:它们都在第三条直线 a3 的同旁,并且都位于两条直线 a1 , a2 之间,这样的一对角叫做“同旁内角”。 答: 有。 3与8四. 知识整理(反思):问题1.你觉得
6、应该按怎样的步骤在“三线八角”中确定关系角?确定前提(三线) 寻找构成的角(八角) 确定构成角中的关系角问题2:在下面同位角、内错角、同旁内角中任选一对,请你看看这对角的四条边与“前提”中的“三线”有什么关系?结论:两个角的在同一直线上的边所在直线就是前提中的第三线。五.试试你的身手:例1:如图:请指出图中的同旁内角。(提示:请仔细读题、认真看图。)答: 1与5; 4与6; 1与A; 5与A 合作学习:请找出以上各对关系角成立时的其余各对关系角。1. 其中:1与5 ;4与6是直线 和直线 被直线 所截得到的同旁内角。此时三线构成了 个角。此时,同位角有: ,内错角有: 。2.其中: 1与A是直
7、线 和直线 被直线 所截得到的同旁内角。此时三线构成了 个角。此时,同位角有: ,内错角有: 。 3.其中: 5与A是直线 和直线 被直线 所截得到的同旁内角。此时三线构成了 个角。此时,同位角有: ,内错角有: 。六.让我们自己来试一试 :(练习)1.看图填空: (1)若ED,BC被AB所截,则1与 是同位角。(2)若ED,BC被AF所截,则3与 是内错角。(3)1 与3是AB和AF被 所截构成的 角。(4)2与4是 和 被BC所截构成的 角。七,回顾这节课,你觉得下面的内容掌握了吗?或者说你注意到了吗?1. 如何确定“三线”构成的“八角”。(注意“一个前提”)2. 如何根据“关系角”确定“
8、三线”。(注意找“前提”)3. 要注意数学中的“分类思想”应用,养成良好的思维习惯。4. 你有没有养成解题后“反思”的习惯。1.3平行线的判定(1)教学目标1、理解平行线的判定方法1:同位角相等,两直线平行; 2、学会用“同位角相等,两直线平行”进行简单的几何推理; 3、体会用实验的方法得出几何性质(规律)的重要性与合理性. 教学重点与难点教学重点:是“同位角相等,两直线平行”的判定方法 教学难点:是例1的推理过程的正确表达. 教学过程1 合作动手实验引入复习画两条平行线的方法:提问:(1)怎样用语言叙述上面的图形? (直线l1,l2被AB所截) (2)画图过程中,什么角始终保持相等?(同位角
9、相等,即12) (3)直线l1,l2位置关系如何?( l1l2) (4)可以叙述为:12l1l2 ( ? )2 平行线的判定方法1:由上面,同学们你能发现判定两直线平行的方法吗?语言叙述:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单地说:同位角相等,两直线平行。 几何叙述:12 l1l2 (同位角相等,两直线平行)3 课堂练习: 4.画图练习: P6 课内练习1、3 P6 作业题15 例1 P6 已知直线l1,l2被l3所截,如图,145, 2135,试判断l1与l2是否平行.并说明理由. 解:l1 l2理由如下: 23180,2135 31802180135451451
10、3 l1l2(同位角相等,两直线平行)思路:(1)判定平行线方法.(2)图中有无同位角(注3位置)(3)能说明31吗?(4)结论.(5)3还可以是其它位置吗?你能说明l1l2吗? 6练习 7小结与反思:(1) 你学到了什么?(2) 你认为还有什么不懂的?(3) 你有什么经验与收获让同学们共享呢?1.3平行线的判定(2)教学目标1、使学生掌握平行线的第二、三个判定方法 2、能运用所学过的平行线的判定方法,进行简单的推理和计算3、使学生初步理解;“从特殊到一般,又从一般到特殊”是认识客观事物的基本方法 教学重点与难点教学重点:本节教学的重点是第二、三个判定方法的发现、说理和应用 123教学难点:问
11、题的思考和推理过程是难点教学过程一、从学生原有认知结构提出问题如图,问平行的条件是什么? 在学生回答的基础上再问:三线八角分为三类角, 当同位角相等时,两直线平行,那么内错角或同旁内角具有什么关系时,也能判定两直线平行呢?这就是我们今天要学习的问题(板书课题)学生会跃跃欲试,动脑思考教师引导学生:将内错角或同旁内角设法转化为利用同位角相等二、运用特殊和一般的关系,发现新的判定方法 1通过合作学习,提出猜想EF4ABCD132若图中,直线AB与CD被直线EF所截,若3=4,则AB与CD平行吗?你可以从以下几个方面考虑:我们已经有怎样的判定两直线平行的方法?有3=4,能得出有一对同位角相等吗?由此
12、你又获得怎样的判定平行线的方法?要求学生板书说理过程,在此基础上将“猜想”更改成判定方法二:EFGABCD132H两条直线被第三条直线所截,如果内错角相等,则两条直线平行教师并强调几何语言的表述方法 3=4ABCD(内错角相等,两条直线平行)然后,完成“做一做” 1=121, 2120,3120。说出其中的平行线,并说明理由。EF4ABCD132若图中,直线AB与CD被直线EF所截,若2+4=180,则AB与CD平行吗?你可以由类似的方法得到正确的结论吗? 由此你又获得怎样的判定平行线的方法?要求学生板书说理过程,在此基础上将“猜想”更改成判定方法三:两条直线被第三条直线所截,如果同旁内角互补
13、,则两条直线平行教师并强调几何语言的表述方法 2+4=180ABCD(同旁内角互补,两条直线平行)当学生都得到正确的结论后,引导学生猜想:同旁内角互补,两条直线平行2例题教学,体验新知例2如图,C+A=AEC。判断AB与CD是否平行,并说明理由。分析:延长CE,交AB于点F,则直线CD,AB被直线CF所截。这样,我们可以通过判断内错角C和AFC是否相等,来判定AB与CD是否平行。ACDBEACDBEF板书解答过程。提问:能否用不一样的方法来判定AB与CD是否平行?提示:连结AC。例3 如图A+B+C+D=360,且A=C,B=D,那么ABCD ,ADBC请说明理由。DABC先让学生思考,以小组
14、为单位进行讨论,然后派出代表发言,学生基本上都能想到,用同旁内角互补,两条直线平行的判定,但书写难度较大,教师要加以引导说理过程三、应用举例,变式练习(讲与练结合方式进行教学)ABFEGDC12341、课内练习1、22、如图1=A,则GCAB,依据是;3=B,则EFAB,依据是;2+A=180,则DCAB,依据是;1=4,则GCEF,依据是;C+B=180,则GCAB,依据是;4=A,则EFAB,依据是; 3、探究活动:有一条纸带如图所示,如果工具只有圆规,怎样检验纸带的两条边沿是否平行?如果没有工具呢?请说出你的方法和依据。提示:可尝试用折叠的方法,与你的同伴交流。四、小结1先由教师问学生:
15、到目前为止学习了哪些判定两直线平行的方法?在选择方法时应注意什么问题?2在学生回答的基础上,教师总结指出:(1)学习了3种判定方法(2)学习了由特殊到一般,又由一般到特殊的认识客观事物的基本方法(3)在平行线的判定问题中,要“有的放矢”,根据不同情况作出选择五、作业1.4 平行线的性质(1)一、教育目标 (一)知识教学点 1理解:平行线的性质与平行线的判定是相反问题 2掌握:平行线的性质 3应用:会用平行线的性质进行推理和计算(二)能力训练点1通过画平行线、度量角培养学生实际操作能力(即画图测量的能力)2通过平行线性质定理的推导,培养学生的观察分析和进行简单的逻辑推理能力二、教学重点、难点与疑
16、点(一)重点 平行线的性质公理及平行线性质定理的推理(二)难点 平行线性质与判定的区别及推理过程三、教学方法采用尝试指导,引导发现法,充分发挥学生的主体作用,体现民主意识和开放意识四、教具准备投影仪、三角板、自制投影片 五、教学步骤(一)创设情境,复习导入师:上节课我们学习了平行线的判定,回忆所学内容看下面的问题(出示投影片1)1如图2-58,(1)1_2(已知),ab( )(2)2_3(已知),ab( )(3)24=_(已知),ab( )2如图2-59,(1)已知12,则2与3有什么关系?为什么?(2)已知12,则2与4有什么关系?为什么?3如图2-60,一条公路两次拐弯后,和原来的方向相同
17、,第一次拐的角B是142,第二次拐的角C是多少度?学生活动:学生口答第1、2两题师:第3题是一个实际问题,要给出C的度数,就需要我们研究与判定相反的问题,即已知两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质板书课题:板书 平行线的性质(1) (二)探索新知、讲授新课师:我们都知道平行线的画法,请同学们画出直线AB的平行线CD,结合画图过程思考画出的平行线,已有一对同位角的关系是怎样的?学生活动:学生在练习本上画图并思考学生画图的同时教师在黑板上画出图形(见图2-61),当同学们思考时,教师有意识地重复演示过程学生活动:学生能够在完成作图后迅速地答出已有一对同位角相等提出问
18、题:是不是每一对同位角都相等呢?请同学们任画一条直线EF,使它截平行线AB与CD,得同位角3、4,利用量角器量一下,3与4有什么关系?学生活动:学生按老师的要求画出图形,并进行度量,回答出不论怎样画截线,所得的同位角都相等根据学生的回答,教师肯定结论师:两条直线被第三条直线所截,如果这两条直线平行,那么同位角相等我们把平行线的这个性质作为公理板书 两条平行线被第三条直线所截,同位角相等简单说成,两直线平行,同位角相等提出问题:请同学们观察图2-62的图形,两条平行线被第三条直线所截,同位角是相等的,那么内错角、同旁内角有什么关系呢?学生活动:学生观察分析思考,会很容易地答出内错角相等,同旁内角
19、互补师:教师继续提问,你能论述为什么内错角相等,同旁内角互补吗?同学们可以讨论一下学生活动:学生们思考,并相互讨论后,有的同学举手回答教师根据学生回答,给予肯定或指正的同时板书板书 ab(已知),12(两条直线平行,同位角相等)13(对顶角相等),2=3(等量代换)师:由此我们又得到了平行线有怎样的性质呢?学生活动:同学们积极举手回答问题教师根据学生叙述,给出板书:板书 两条平行线被第三条直线所截,内错角相等简单说成:两直线平行,内错角相等师:下面请同学们自己推导同旁内角是互补的并归纳总结出平行线的第三条性质请一名同学到黑板上板演,其他同学在练习本上完成师生共同订正推导过程和第三条性质,形成正
20、确板书板书 ab(已知)1=2(两直线平行,同位角相等)14=180(邻补角定义)2+4180(等量代换)即:两条平行线被第三条直线所截,同旁内角互补,简单说成,两直线平行,同旁内角互补师:我们知道了平行线的性质,在今后我们经常要用到它们去解决、论述一些问题,所需要知道的条件是两条直线平行,才有同位角相等,内错角相等,同旁内角互补,即它们的符号语言分别为:ab(已知见图2-63),1=2(两直线平行,同位角相等)ab(已知),23(两直线平行,内错角相等)ab(已知),2+4180(两直线平行,同旁内角互补)(板书在三条性质对应位置上)(三)尝试反馈,巩固练习师:我们知道了平行线的性质,看复习
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 浙教版七 年级 数学 教案
链接地址:https://www.77wenku.com/p-238634.html