2023年浙江省温州市中考数学四月份冲刺试卷(含答案解析)
《2023年浙江省温州市中考数学四月份冲刺试卷(含答案解析)》由会员分享,可在线阅读,更多相关《2023年浙江省温州市中考数学四月份冲刺试卷(含答案解析)(28页珍藏版)》请在七七文库上搜索。
1、2023年浙江省温州市中考数学四月份冲刺试卷一、选择题(本题有10小题,每小题4分,共40分)1(本题4分)计算的结果是()ABCD2(本题4分)某几何体的三视图如图,则该几何体是()A长方体B正三棱柱C球D圆柱3(本题4分)在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在和,则口袋中白色球的个数可能是()A24B18C16D64(本题4分)某校六一活动中,10位评委给某个节目的评分各不相同,去掉1个最高分和1个最低分,剩下的8个评分与原始的10个评分相比一定不发生变化的是()A平均数B中位数C方差D众
2、数5(本题4分)下列命题中:若,则;若,则;对顶角相等;两边一角对应相等的两个三角形全等是真命题的个数有()A个B个C个D个6(本题4分)如图,分别切于B,C两点,若,则的度数为()A32B52C64D727(本题4分)小张在一条笔直的绿谷跑道上以70米/分钟的速度,从起点出发匀速健步走30分钟后,他停下来休息了5分钟,然后原地返回起点,全程总用时70分钟设小张离起点的距离为y米,健步走的时间为x分钟,y关于x的函数关系如图所示,则小张返回的速度是()A60米/分钟B70米/分钟C75米/分钟D80米/分钟8(本题4分)矩形纸片中,将纸片对折,使顶点A与顶点C重合,得折痕,将纸片展开铺平后再进
3、行折叠,使顶点B与顶点D重合,得折痕,展开铺平后如图所示若折痕与较小的夹角记为,则()ABCD9(本题4分)如图,在平面直角坐标系中,菱形在第一象限内,边与轴平行,两点纵坐标分别为6,4,反比例函数的图象经过,两点若菱形的面积为,则值为()A8B12C10D910(本题4分)勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理,在我国古书周髀算经中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图),后人称之为“赵爽弦图”,流传至今,如图是用四个全等的直角三角形拼成一个正方形,利用面积法可以证明勾股定理如图2连接EG并延长交D的延长
4、线于点M,如tanM,则的值为()A2BCD1.4二、填空题(本题有6小题,每小题5分,共30分)11(本题5分)因式分解:_12(本题5分)已知方程x23x+m=0有两个实数根,则m所取的值可以是_(填一个即可)13(本题5分)若一个扇形的圆心角是,面积为,则这个扇形的半径是_14(本题5分)已知不等式组的解集为1x1,则(a+b)(b1)的值为_15(本题5分)廊桥是我国古老的文化遗产如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为,为保护廊桥的安全,在该抛物线上距水面高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离是_米16(本题5分)图1是一种折叠式晾衣架展开时的情
5、况,图2是示意图,两个支脚和晾衣臂,张开夹角,晾衣臂支架(1)当时,的度数为_(2)当OC从水平方向旋转到时,的面积为_三、解答题(本题有8小题,共108881010121480分)17(本题10分)计算:(1); (2)化简:18(本题8分)如图,点,在同一直线上,点,在的异侧,(1)求证:(2)若,求的度数19(本题8分)在“2019慈善一日捐”活动中,某校八年级(1)班40名同学的捐款情况如下表:捐款金额(元)203050a80100人数(人)2816x47根据表中提供的信息回答下列问题:(1)x的值为_,捐款金额的众数为_元,中位数为_元(2)已知全班平均每人捐款57元,求a的值20(
6、本题8分)如图,在的方格中,点、均在格点上(要求:只用无刻度的直尺按要求作图,各画出一条即可;所作的点,点均在格点上;先用铅笔画,再用签字笔描黑)(1)在图1作平分;(2)在图2作垂直平分;(3)在图3中作,与线段的交点为,使21(本题10分)设二次函数(,是常数)的图像与轴交于,两点.(1)若,两点的坐标分别为,求该二次函数的表达式.(2)若函数的表达式可以写成(是常数)的形式,求的最大值.(3)设一次函数(是常数),若二次函数的表达式还可以写成的形式,当函数的图像经过点时,求的值.22(本题10分)如图,分别是,上的点,于点,于点(1)求证:;(2)若,求与的面积之比23(本题12分)根据
7、以下素材,探索完成任务如何运输最省?素材一为做到“动态清零”,市卫生防疫部门需运输一批疫苗到某县,现有冷链车A 和 B型两种运输车,其中型冷链运输车一次可运输200盒疫苗,型冷链运输车一次可运输150盒疫苗素材二型冷链运输车一次需费用元,型冷链运输车一次需费用元问题解决任务1若某县需要1500盒疫苗,市卫生防疫部门只安排型冷链运输车,则至少需型冷链运输车多少辆?任务2市卫生防疫部门用上述两种冷冻车共12辆运输这批疫苗若运输疫苗不少于2100盒,且总费用小于元请你列出所有的运输方案任务3在任务2的条件下,由于A型和 B型两种运输车,运输时走不同高速路线,A型需a元过路费, B型元过路费,求如何安
8、排两种车型运输的过路费总和最少?24(本题14分)如图1,在中,D是边上的一点,E是边上的一点,且的延长线于点F(1)求证:(2)若E是的中点,求和的长如图2,G是的中点,在边上取一点M,连接并延长交线段于N,连接,若五边形中有两条边平行,求出所有满足条件的的长2023年浙江省温州市中考数学四月份冲刺试卷一、选择题(本题有10小题,每小题4分,共40分)1(本题4分)计算的结果是()ABCD【答案】B【分析】根据同底数幂的乘法法则即可得到正确选项【详解】解:;故选:【点睛】本题考查了同底数幂的乘法法则,熟记对应法则是解题的关键2(本题4分)某几何体的三视图如图,则该几何体是()A长方体B正三棱
9、柱C球D圆柱【答案】D【分析】首先判断该几何体为柱体,然后根据其左视图为圆得到该几何体为圆柱【详解】解:根据主视图和俯视图为长方形可得此几何体为柱体,左视图为圆可得此几何体为圆柱,故选D【点睛】主要考查了由三视图判断几何体及几何体的展开图的知识,重点训练空间想象能力3(本题4分)在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在和,则口袋中白色球的个数可能是()A24B18C16D6【答案】C【分析】先由频率之和为1计算出白球的频率,再由数据总数频率频数计算白球的个数【详解】解:摸到红色球、黑色球的频率稳
10、定在和,摸到白球的频率为,口袋中白色球的个数可能是个故选:C【点睛】大量反复试验下频率稳定值即概率关键是算出摸到白球的频率4(本题4分)某校六一活动中,10位评委给某个节目的评分各不相同,去掉1个最高分和1个最低分,剩下的8个评分与原始的10个评分相比一定不发生变化的是()A平均数B中位数C方差D众数【答案】B【分析】根据平均数、中位数、方差、众数的意义即可求解【详解】解:根据题意,从10个原始评分中去掉1个最高分和1个最低分,得到8个有效评分8个有效评分与10个原始评分相比,中位数一定不发生变化,而平均数,方差,众数都与去掉的数据相关,会受到影响,所以平均数,众数与方差都可能产生变化故选:B
11、【点睛】本题考查了平均数、中位数、众数、方差的意义平均数是指在一组数据中所有数据之和再除以数据的个数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);一组数据中出现次数最多的数据叫做众数;一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差5(本题4分)下列命题中:若,则;若,则;对顶角相等;两边一角对应相等的两个三角形全等是真命题的个数有()A个B个C个D个【答案】A【分析】根据不等式的性质、绝对值的性质、对顶角的性质以及全等三角形的判定定理判断即可【详解】解:若,则或或,原命题是假命题;若,则,原命题是假命题;对顶角相等,原命题
12、是真命题;两边及夹角对应相等的两个三角形全等,原命题是假命题;真命题的个数有1个,故选:A【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题判断命题的真假关键是要熟悉课本中的性质定理6(本题4分)如图,分别切于B,C两点,若,则的度数为()A32B52C64D72【答案】B【分析】根据切线长定理、等腰三角形的性质以及三角形的内角和即可求解【详解】解:,分别切于B,C两点,则:,故答案为:B【点睛】本题考查了切线长定理以及三角形的内角和,等腰三角形的性质,掌握切线长定理是解题的关键7(本题4分)小张在一条笔直的绿谷跑道上以70米/分钟的速度,从起点出发匀速健步走30分钟
13、后,他停下来休息了5分钟,然后原地返回起点,全程总用时70分钟设小张离起点的距离为y米,健步走的时间为x分钟,y关于x的函数关系如图所示,则小张返回的速度是()A60米/分钟B70米/分钟C75米/分钟D80米/分钟【答案】A【分析】根据去时的速度和时间可以求出路程,然后用路程回时的时间即可求出返回时的速度【详解】解:路程速度时间,即米,返回时的时间为:分钟,则返回时的速度米/分钟,故选:A【点睛】本题考查了一次函数的应用,解题的关键是明确题意,得出路程8(本题4分)矩形纸片中,将纸片对折,使顶点A与顶点C重合,得折痕,将纸片展开铺平后再进行折叠,使顶点B与顶点D重合,得折痕,展开铺平后如图所
14、示若折痕与较小的夹角记为,则()ABCD【答案】A【分析】过D作于H,先证明,然后设,则,可得,从而得到,再由,可得,即可求解【详解】解:过D作于H,如图:根据题意可得:,由矩形纸片中,设,则,在中,故选:A【点睛】本题主要考查了矩形与折叠问题,解直角三角形,勾股定理,根据题意得到是解题的关键9(本题4分)如图,在平面直角坐标系中,菱形在第一象限内,边与轴平行,两点纵坐标分别为6,4,反比例函数的图象经过,两点若菱形的面积为,则值为()A8B12C10D9【答案】B【分析】过点作轴的垂线,交的延长线于点,根据,两点的纵坐标分别为6,4,可得出横坐标,即可表示,的长,根据菱形的面积为,求得的长,
15、在中,计算的长,列方程即可得出的值【详解】解:过点作轴的垂线,交的延长线于点,轴,两点在反比例函数的图象,且纵坐标分别为6,4,菱形的面积为,即,在中,故选:B【点睛】本题考查了反比例函数和几何综合,菱形的性质,勾股定理,掌握数形结合的思想是解题关键10(本题4分)勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理,在我国古书周髀算经中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图),后人称之为“赵爽弦图”,流传至今,如图是用四个全等的直角三角形拼成一个正方形,利用面积法可以证明勾股定理如图2连接EG并延长交D的延长线于点M,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 浙江省 温州市 中考 数学四 月份 冲刺 试卷 答案 解析
链接地址:https://www.77wenku.com/p-238695.html