2023年中考数学压轴题训练:二次函数综合(平移问题)含答案
《2023年中考数学压轴题训练:二次函数综合(平移问题)含答案》由会员分享,可在线阅读,更多相关《2023年中考数学压轴题训练:二次函数综合(平移问题)含答案(13页珍藏版)》请在七七文库上搜索。
1、2023年中考数学压轴题训练:二次函数综合(平移问题)1如图,抛物线经过两点(1)求抛物线的解析式;(2)点P是直线下方抛物线上的一个动点,求面积的最大值;(3)点M是直线上的一个动点,将点M向左平移3个单位长度得到点N,设点M的横坐标为m,若线段与抛物线只有一个公共点,请直接写出m的取值范围2如图,在平面直角坐标系中,抛物线与直线AB交于点,(1)求抛物线的函数解析式;(2)点P是直线AB下方抛物线上一点,过点P作y轴的平行线,交AB于点E,过点P作AB的垂线,垂足为点F,求周长的最大值及此时点P的坐标;(3)在(2)中取得最大值的条件下,将该抛物线沿水平方向向左平移3个单位,点Q为点P的对
2、应点,点N为原抛物线对称轴上一点在平移后抛物线上确定一点M,使得以点B,Q,M,N为顶点的四边形是平行四边形,写出所有符合条件的点M的坐标,并写出求解点M的坐标的其中一种情况的过程3如图1,已知抛物线与x轴交于点,与y轴交于点,顶点为(1)求抛物线的解析式和顶点的坐标;(2)如图2,若点P为抛物线在直线上方图象上一动点,过点P作轴交直线于点Q,当四边形是平行四边形时,求点P的横坐标;(3)抛物线沿直线方向向下平移,当平移后的抛物线与x轴只有一个交点时,求出抛物线上A、M两点之间的部分所扫过的面积4如图,在平面直角坐标系中,抛物线与x轴交于,两点,与y轴交于点C,连接,y轴上有一点(1)求抛物线
3、的函数表达式;(2)点P是直线下方抛物线上的一个动点,过点P作轴于点H,交直线于点E,作交直线于点F,求的最大值,及此时点P的坐标;(3)在(2)的条件下,将点P向右平移个单位长度,再向上平移个单位长度得到点;将抛物线沿着射线方向平移个单位长度得到一条新抛物线,点M为新抛物线与y轴的交点,N为新抛物线上一点,Q为新抛物线对称轴上一点,请写出所有使得以点,M,Q,N为顶点的四边形是平行四边形的点Q的坐标,并写出求解点Q的坐标的其中一种情况的过程5如图,在平面直角坐标系中,抛物线与直线交于点,(1)求该抛物线的函数表达式;(2)点P是直线下方抛物线上的一动点,过点P作y轴的平行线交于点E,交x轴于
4、D,求的最大值及此时点P的坐标;(3)在(2)中取得最大值的条件下,将该抛物线沿水平方向向右平移3个单位,点M为点P的对应点,平移后的抛物线与y轴交于点F,N为平移后的抛物线的对称轴上一点在平移后的抛物线上确定一点Q,使得以点M,F,N,Q为顶点的四边形是平行四边形,写出所有符合条件的点Q的坐标,并写出求解点Q的坐标的其中一种情况的过程6如图,抛物线与轴交于点(点在点左侧),与轴交于点,连接(1)求线段的长;(2)点为直线上方抛物线上一点,求四边形面积的最大值及此时点的坐标;(3)将原抛物线向左平移1个单位长度得到抛物线,与原抛物线交于点,点在直线上,在平面直角坐标系中是否存在点,使以点为顶点
5、的四边形的菱形,若存在,请直接写出点的坐标,并写出其中一个点的坐标的解答过程;若不存在,请说明理由7如图1,在平面直角坐标系中,抛物线与轴交于点,点,与轴交于点(1)求该抛物线的解析式;(2)点为直线上方抛物线上的一点,过点作轴的平行线交于点,过点作轴的平行线交于点,求的最大值以及此时点的坐标;(3)如图2,将抛物线沿射线的方向平移,使得平移后的抛物线经过线段的中点,且平移后抛物线的对称轴与轴交于点,是直线上任意两点,为新抛物线上一点,直接写出所有使得以点,为顶点的四边形是平行四边形的点的横坐标8在平面直角坐标系中,抛物线过点且与y轴交于点B,抛物线的顶点为C点P为该抛物线上一动点(不与C重合
6、),设点P的横坐标为m(1)抛物线的解析式为_,顶点C的坐标为_;(2)将该抛物线沿y轴向下平移2个单位长度,点P的对应点为,若,求点P的坐标;(3)当点P在直线上方的抛物线上,且点C、P到直线的距离相等时,求m的值;(4)当点P在对称轴右侧时,连接,以为边作正方形,当点D恰好落在该抛物线的对称轴上时,直接写出点P的坐标9如图,二次函数的图象与x轴交于点和,点A在点B的左侧,与y轴交于点C(1)求二次函数的函数解析式;(2)如图,点P在直线上方的抛物线上运动,过点P作交于点D,作轴交于点E,求的最大值及此时点P的坐标;(3)在(2)中取最大值的条件下,将抛物线沿水平方向向右平移4个单位,再沿竖
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年中 数学 压轴 训练 二次 函数 综合 平移 问题 答案
链接地址:https://www.77wenku.com/p-239231.html