2023年中考数学压轴题训练:二次函数综合(旋转问题)含答案
《2023年中考数学压轴题训练:二次函数综合(旋转问题)含答案》由会员分享,可在线阅读,更多相关《2023年中考数学压轴题训练:二次函数综合(旋转问题)含答案(12页珍藏版)》请在七七文库上搜索。
1、2023年中考数学压轴题训练:二次函数综合(旋转问题)1抛物线交轴于点,交轴负半轴于点,交轴正半轴于点,已知(1)如图1,求抛物线解析式;(2)如图2,点是第一象限抛物线上一点,设点横坐标为,面积为,试用表示;(3)如图3,在(2)的条件下,连接,将射线绕点逆时针旋转得到的射线与的延长线交于点,与轴交于点,连接与轴交于点,连接,过点作轴的垂线与过点作的垂线交于点,连接,与交于点,且,求点点的坐标2如图,在直角坐标系中有,O为坐标原点,将此三角形绕原点O顺时针旋转,得到,二次函数的图象刚好经过A,B,C三点(1)求二次函数的解析式及顶点P的坐标;(2)过定点Q的直线与二次函数图象相交于M,N两点
2、若,求k的值;证明:无论k为何值,恒为直角三角形3如图,已知抛物线与轴交于点和点,与轴交于点,且(1)求点C的坐标和此抛物线的解析式;(2)若点E为第二象限抛物线上一动点,于点F,是否存在点E,使线段的长度最大若存在,请求出点E的坐标;若不存在,请说明理由;(3)点P在抛物线的对称轴上,若线段绕点逆时针旋转后,点的对应点恰好也落在此抛物线上,请直接写出点P的坐标4如图1,在平面直角坐标系中,抛物线()与x轴交于点,点,与y轴交于点A点D的坐标为(1)求二次函数的解析式及点A的坐标(2)如图1,点E为该抛物线在第一象限内的一动点,过E作轴,交于点F,求的最大值及此时点E的坐标(3)如图2,在(2
3、)的情况下,将原抛物线绕点D旋转得到新抛物线,点N是新抛物线上一点,在新抛物线上的对称轴上是否存在一点M,使得点D,E,M,N为顶点的四边形为平行四边形,若存在,请直接写出点M的坐标,并写出其中一个点M的求解过程5如图,在平面直角坐标系中,已知抛物线的图象与x轴交于点A,B两点,点A坐标为,点B坐标为,与y轴交于点C(1)求抛物线的函数解析式;(2)若将直线绕点A顺时针旋转,交抛物线于一点P,交y轴于点D,使,求直线函数解析式;(3)在(2)条件下若将线段平移(点A,C的对应点M,N),若点M落在抛物线上且点N落在直线上,求点M的坐标6如图1,抛物线交x轴于、B两点(点A在B的左侧),交y轴于
4、点C,且(1)直接写出抛物线的解析式_;(2)如图2,射线绕点C顺时针方向旋转,交抛物线于点D,求点D的横坐标;(3)如图3,点,点F在抛物线上,平移线段至,使H、G分别与E、F对应,且H、G均落在抛物线上,连,求证:直线经过一个定点7如图,抛物线经过点,点,与轴交于点,点在射线上运动,过点作直线轴,交抛物线于点,(点在点的左侧)(1)求该抛物线的解析式和对称轴;(2)若,求点E的坐标;(3)若抛物线的顶点关于直线的对称点为点P,当点P到x轴的距离等于1时,求出所有符合条件的线段的长;(4)以点D为旋转中心,将点B绕点D顺时针旋转得到点,直接写出点落在抛物线上时点D的坐标8如图1,抛物线交x轴
5、于A、B两点(A在B左侧),交y轴于点C,(1)求抛物线的解析式;(2)如图2,点T在抛物线上,且,求点T的坐标;(3)如图3,将线段绕点C逆时针旋转至(),轴于H,点P为的内心,直接写出的最小值 _9如图1,抛物线的图象与x轴交于两点,与y轴交于点C,且(1)求抛物线解析式;(2)点M是直线上方的抛物线上一动点,M点的横坐标为m,四边形的面积为S,求S关于m的函数关系式,并求出S的最大值;(3)如图2,连接,将绕平面内的某点(记为P)逆时针旋转得到,O、B、D的对应点分别为若点两点恰好落在抛物线上,求旋转中心点P的坐标10如图,在平面直角坐标系中,抛物线与x轴交于点A和B(点A在点B的左侧)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年中 数学 压轴 训练 二次 函数 综合 旋转 问题 答案
链接地址:https://www.77wenku.com/p-239234.html